精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xoy中,抛物线yax24axc的图象经过点A04

1)请直接写出抛物线的对称轴的表达式

2)已知点B(14a),点C在直线AB上,且点C的横坐标为4,请直接写出点C的纵坐标(用含a的式子表示)

3)在(2)的条件下,抛物线的图象与线段BC恰有一个公共点,请直接写出a的取值范围

【答案】1;(2);(3.

【解析】

1)根据对称轴公式直接代入求解即可;

2)求出直线AB的解析式,令横坐标为4,求出即为点C的纵坐标;

3)对的正负进行分类讨论,然后结合函数图象进行求解即可;

1

抛物线的对称轴为:

2)设直线AB的解析式为:

代入得:

解得:

直线AB得解析式为:

时,

C的纵坐标为:

3)当,B点和C点均位于轴下方,要使抛物线的图象与线段BC恰有一个公共点,那么:

解得:

时,B点和C点均位于轴下方,此时抛物线,顶点坐标为,而

此时抛物线和线段BC没有交点

综上所述,要使抛物线的图象与线段BC恰有一个公共点,那么的取值范围是:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=﹣x1的图象与x轴交于点A,与y轴交于点B,与反比例函数图象的一个交点为M(﹣2m).

1)求反比例函数的解析式;

2)当y2y1时,求x的取值范围;

3)求点B到直线OM的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax22ax+c,当﹣3x<﹣2时,y0;当3x4时,y0.则ac满足的关系式是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】地和地之间的铁路交通设有特快列车和普通列车两种车次,某天一辆普通列车从A地出发匀速驶向地,同时另一辆特快列车从地出发匀速驶向地,两车与地的距离(千米)与行驶时间(时)的函数关系如图所示.

1地到地的距离为 千米,普通列车到达地所用时间为 小时;

2)求特快列车与地的距离的函数关系式;

3)在两地之间有一座铁路桥,特快列车到铁路桥后又行驶小时与普通列车相遇,直接写出地与铁路桥之间的距离 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=(a1x2+3ax+1图象上的四个点的坐标为(x1m),(x2m),(x3n),(x4n),其中mn.下列结论可能正确的是(  )

A.a,则 x1x2x3x4

B.a,则 x4x1x2x3

C.a<﹣,则 x1x3x2x4

D.a<﹣,则 x3x2x1x4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小明主设计的作一个含30°角的直角三角形的尺规作图过程.

已知:直线l

求作:ABC,使得∠ACB90°,∠ABC30°

作法:如图,

①在直线l上任取两点OA

②以点O为圆心,OA长为半径画弧,交直线l于点B

③以点A为圆心,AO长为半径画弧,交于点C

④连接ACBC

所以ABC就是所求作的三角形.

根据小明设计的尺规作图过程:

1)使用直尺和圆规,补全图形;(保留作图痕迹)

2)完成下面的证明.

证明:在⊙O中,AB为直径,

∴∠ACB90°(①  ),(填推理的依据)

连接OC

OAOCAC

∴∠CAB60°

∴∠ABC30°(②   ),(填推理的依据)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线ymx22mx+n(m≠0)x轴交于点AB,点A的坐标为(20)

(1)写出抛物线的对称轴;

(2)直线过点B,且与抛物线的另一个交点为C

①分别求直线和抛物线所对应的函数表达式;

②点P为抛物线对称轴上的动点,过点P的两条直线l1yx+al2y=﹣x+b组成图形G.当图形G与线段BC有公共点时,直接写出点P的纵坐标t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰三角形是线段上的一点,连结,且有.

1)若,求的长;

2)若,求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:

商品名称

进价(/)

40

90

售价(/)

60

120

设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.

()写出y关于x的函数关系式;

()该商场计划最多投入8000元用于购买这两种商品,

①至少要购进多少件甲商品?

②若销售完这些商品,则商场可获得的最大利润是多少元?

查看答案和解析>>

同步练习册答案