精英家教网 > 初中数学 > 题目详情

【题目】ABC中,ABAC,∠ABC72°,以B为圆心,以任意长为半径画弧,分别交BABCMN,再分别以MN为圆心,以大于MN为半径画弧,两弧交于点P,射线BPAC于点D,则图中与BC相等的线段有(  )

A. BDB. CDC. BDADD. CDAD

【答案】C

【解析】

由基本作图得到BP平分∠ABC,所以∠ABP=CBP=36°,则利用等腰三角形的性质得∠C=ABC=72°,再利用三角形内角和定理计算出∠A=36°,于是得到AD=BD,然后计算出∠BDC=72°,从而得到∠BDC=C,所以BD=BC.

解:由画法得BP平分∠ABC,则∠ABP=∠CBP

ABAC

∴∠C=∠ABC72°

∴∠A180°2×72°36°

∴∠A=∠ABD

ADBD

∵∠BDC=∠A+ABD72°

∴∠BDC=∠C

BDBC

BCBDAD

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在锐角ABC中,AB=4BC=5,∠ACB=45°,将ABC绕点B按逆时针方向旋转,得到A1BC1

1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;

2)如图2,连接AA1CC1.若ABA1的面积为4,求CBC1的面积;

3)如图3,点E为线段AB中点,点P是线段AC上的动点,在ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y=﹣在第二象限的图象上有两点AB,它们的横坐标分别为﹣1、﹣2,在直线y=x上求一点P,使PA+PB最小.则P点坐标为(  )

A. PB. PC. P11D. P

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB3BC,以点A为圆心,AD为半径画弧交AB于点E连接CE,作线段CE的中垂线交AB于点F,连接CF,则sinCFB_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,以AB为直径的圆OAC于点D,交BC于点E,以点B为顶点作∠CBF,使得∠CBFBAC,交AC延长线于点F连接BDAE,延长AEBF于点G

1)求证:BF为⊙O的切线;(2)求证:ACBCBDAG;(3)若BC2CDCF45,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A点的坐标为(a6),ABx轴于点B=,反比例函数y=的图象的一支分别交AOAB于点CD.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为

1)求反比例函数的解析式及点E的坐标;

2)连接BC,求SCEB

3)若在x轴上的有两点Mm0N-m0).

①以EMCN为顶点的四边形能否为矩形?如果能求出m的值,如果不能说明理由.

②若将直线OAO点旋转,仍与y=交于CE,能否构成以EMCN为顶点的四边形为菱形,如果能求出m的值,如果不能说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

如图,抛物线y=﹣x2+2x+6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,其对称轴与抛物线交于点D.与x轴交于点E.

(1)求点A,B,D的坐标;

(2)点G为抛物线对称轴上的一个动点,从点D出发,沿直线DE以每秒2个单位长度的速度运动,过点C作x轴的平行线交抛物线于M,N两点(点M在点N的左边).

设点G的运动时间为ts.

①当t为何值时,以点M,N,B,E为顶点的四边形是平行四边形;

②连接BM,在点G运动的过程中,是否存在点M.使得∠MBD=∠EDB,若存在,求出点M的坐标;若不存在,请说明理由;

(3)点Q为坐标平面内一点,以线段MN为对角线作萎形MENQ,当菱形MENQ为正方形时,请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分)如图1,在Rt△ABC中,∠B=90°BC=2AB=8,点DE分别是边BCAC的中点,连接DE. △EDC绕点C按顺时针方向旋转,记旋转角为α.

1)问题发现

时,时,

2)拓展探究

试判断:当0°≤α360°时,的大小有无变化?请仅就图2的情况给出证明.

3)问题解决

△EDC旋转至ADE三点共线时,直接写出线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:

(1)本次随机调查了多少名学生?

(2)补全条形统计图中“书画”、“戏曲”的空缺部分;

(3)若该校共有名学生,请估计全校学生选择“戏曲”类的人数;

(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕表示)

查看答案和解析>>

同步练习册答案