精英家教网 > 初中数学 > 题目详情

【题目】新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买AB两种花苗.据了解,购买A种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.

1)求AB两种花苗的单价分别是多少元?

2)经九年级一班班委会商定,决定购买AB两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?

【答案】1AB两种花苗的单价分别是20元和30元;(2)本次购买至少准备240元,最多准备290

【解析】

1)设AB两种花苗的单价分别是x元和y元,则,即可求解;

2)设购买B花苗x盆,则购买A花苗为(12x)盆,设总费用为w元,由题意得:w2012x+30xx=﹣x2+10x+2400x12),即可求解.

解:(1)设AB两种花苗的单价分别是x元和y元,则,解得

答:AB两种花苗的单价分别是20元和30元;

2)设购买B花苗x盆,则购买A花苗为(12x)盆,设总费用为w元,

由题意得:w2012x+30xx=﹣x2+10x+2400x12),

∵-10.故w有最大值,当x5时,w的最大值为265,当x12时,w的最小值为216

故本次购买至少准备216元,最多准备265元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ACBC4,∠ACB90°,正方形BDEF的边长为2,将正方形BDEF绕点B旋转一周,连接AEBECD

(1)请找出图中与ABE相似的三角形,并说明理由;

(2)求当E在线段AF上时CD的长;

(3)AE的中点为M,连接FM,试求FM长的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的直径,点右侧半圆上的一个动点,点左侧半圆的中点,的切线,切点为,连接于点.点为射线上一动点,连接

1)当时, 求证:

2)若的半径为,请填空:

当四边形为正方形时,

时, 四边形为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB12AD15ECD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处,点P是线段CB延长线上的动点,连接PA,若△PAF是等腰三角形,则PB的长为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+ca0)的图象如图所示,对称轴为直线x=﹣1,下列结论不正确的是(  )

A.b24acB.abc0

C.ac0D.am2+bmabm为任意实数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+ca0)的图象经过A10),B30),C06)三点.

1)求抛物线的解析式.

2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BEAD于点E,若直线BE将△ABD的面积分为12两部分,求点E的坐标.

3P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使ADPQ为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题探究:

小红遇到这样一个问题:如图1中,AD是中线,求AD的取值范围.她的做法是:延长ADE,使,连接BE,证明,经过推理和计算使问题得到解决.

请回答:(1)小红证明的判定定理是:__________________________________________

2AD的取值范围是________________________

方法运用:

3)如图2AD的中线,在AD上取一点F,连结BF并延长交AC于点E,使,求证:

4)如图3,在矩形ABCD中,,在BD上取一点F,以BF为斜边作,且,点GDF的中点,连接EGCG,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9810.5798109.5899.57.59.598.57.5109.58979.58.597997.58.58.5987.59.5109.58.5989.在对这些数据整理后,绘制了如图的统计图表:

睡眠时间分组统计表:

组别

睡眠时间分组

人数(频数)

1

7≤t8

m

2

8≤t9

11

3

9≤t10

n

4

10≤t11

4

请根据以上信息,解答下列问题:

1m   n   a   b   

2)抽取的这40名学生平均每天睡眠时间的中位数落在   组(填组别);在扇形统计图中,第4组所在扇形的圆心角是   度;

3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h.请估计该校学生中睡眠时间符合要求的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=﹣x+b的图象与反比例函数k0)的图象相交于AB两点,与x轴相交于点C(40),且点B(3n),连接OB

1)求一次函数和反比例函数的表达式;

2)求△BOC的面积;

3)将直线AB向下平移,若平移后的直线与反比例函数的图象只有一个交点,试说明直线AB向下平移了几个单位长度.

查看答案和解析>>

同步练习册答案