【题目】如图,将一个边长分别为8,16的矩形纸片ABCD沿EF折叠,使C点与A点重合,则EF与AF的比值为( )
A.4 B.
C.2D.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线M:y=ax2+bx+c(a≠0)经过A(﹣1,0),且顶点坐标为B(0,1).
(1)求抛物线M的函数表达式;
(2)设F(t,0)为x轴正半轴上一点,将抛物线M绕点F旋转180°得到抛物线M1.
①抛物线M1的顶点B1的坐标为 ;
②当抛物线M1与线段AB有公共点时,结合函数的图象,求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,面积为4的正方形OABC的顶点O与坐标原点重合,边OA、OC分别在x轴、y轴的正半轴上,点B、P都在函数y=(x>0)的图象上,过动点P分别作轴x、y轴的平行线,交y轴、x轴于点D、E.设矩形PDOE与正方形OABC重叠部分图形的面积为S,点P的横坐标为m.
(1)求k的值;
(2)用含m的代数式表示CD的长;
(3)求S与m之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,
(1)求证:△ACE≌△BCD;
(2)若DE=13,BD=12,求线段AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.
(1)求证:AE=AF;
(2)若DE=3,sin∠BDE=,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中秋节期间某水库养殖场为适应市场需求,连续用天时间,采用每天降低水位以减少捕捞成本的办法.对水库中某种鲜鱼进行捕捞销售,第
天(
且
为整数)的捕捞与销售的相关信息如下:
鲜鱼销售单价(元 | |
单位捕捞成本(元 | |
捕捞量 |
假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出.
(1)求第天的收入
(元)与
(天)之间的函数关系式?(当天收入
日销售额-日捕捞成本)
(2)在第几天取得最大值,最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,
,
是
的一个外角.
实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)
(1)作的平分线
;
(2)作线段的垂直平分线,与
交于点
,与
边交于点
,连接
;
(3)在(1)和(2)的条件下,若,求
的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知图中的曲线是反比例函数(
为常数)图象的一支.
这个反比例函数图象的另一支在第几象限?常数
的取值范围是什么?
若该函数的图象与正比例函数
的图象在第一象内限的交点为
,过
点作
轴的垂线,垂足为
,当
的面积为
时,求点
的坐标及反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于A,B两点,与y轴交于C点,且B(3,0).
(1)求抛物线的函数关系式;
(2)求点A和顶点D的坐标;
(3)若点M是抛物线对称轴上的一个动点,求CM+AM的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com