【题目】如图,已知一次函数y1=ax+b的图象与x轴、y轴分别交于点D、C,与反比例函数y2=的图象交于A、B两点,且点A的坐标是(1,3)、点B的坐标是(3,m).
(1)求一次函数与反比例函数的解析式;
(2)求C、D两点的坐标,并求△AOB的面积;
(3)根据图象直接写出:当x在什么取值范围时,y1>y2?
【答案】(1)y2=,y1=﹣x+4;(2)4;(3)当 x 满足 1<x<3 、x<0时,则 y1>y2.
【解析】
(1)把点A(1,3)代入y2=,求出k,得到反比例函数的解析式;再把B(3,m)代入反比例函数的解析式,求出m,得到点B的坐标,把A、B两点的坐标代入y1=ax+b,利用待定系数法求出一次函数的解析式;
(2)把x=0代入一次函数解析式,求出y1=4,得到C点的坐标,把y1=0代入一次函数解析式,求出x=4,得到D点坐标,再根据S△AOB=S△AOD-S△BOD,列式计算即可;
(3)找出一次函数落在反比例函数图象上方的部分对应的自变量的取值即可.
解:(1)把点A(1,3)代入y2=,则3=,即k=3,
故反比例函数的解析式为:y2=.
把点B的坐标是(3,m)代入y2=,得:m==1,
∴点B的坐标是(3,1).
把A(1,3),B(3,1)代入y1=ax+b,
得,解得,故一次函数的解析式为:y1=﹣x+4;
(2)令x=0,则y1=4;令y1=0,则x=4,
∴C(0,4), D(4,0),
∴S△AOB=S△AOD﹣S△BOD=×4×3﹣×4×1=4;
(3)由图像可知x<0、1<x<3时,一次函数落在反比例函数图象上方,故满足y1>y2条件的自变量的取值范围: 1<x<3 、x<0.
科目:初中数学 来源: 题型:
【题目】在中,,,直线经过点,且于点,于点.
(1)当直线绕点旋转到图1的位置时,求证:
①;
②.
(2)当直线绕点旋转到图2的位置时,第(1)问中的两个结论是否还成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:
①△BDE∽△DPE;②=;③DP2=PHPB;④tan∠DBE=2﹣.
其中正确的是( )
A.①②③④ B.①②④ C.②③④ D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法:其中正确的有_____.(填写序号)
①若x>y,则a2x>a2y;
②若(a﹣1)x>a﹣1,则x>1;
③有一个角是60°的三角形是等边三角形;
④旋转不改变图形的形状和大小
⑤以7、24、25为三边长的三角形是直角三角形;
⑥真命题的逆命题也是真命题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,两对角线AC、BD交于点O,AC=8,BD=6,当△OPD是以PD为底的等腰三角形时,CP的长为( )
A. 2B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的顶点坐标分别为A(﹣6,0),B(4,0),C(0,8),把△ABC沿直线BC翻折,点A的对应点为D,抛物线y=ax2﹣10ax+c经过点C,顶点M在直线BC上.
(1)证明四边形ABCD是菱形,并求点D的坐标;
(2)求抛物线的对称轴和函数表达式;
(3)在抛物线上是否存在点P,使得△PBD与△PCD的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,DB=6,AD=3,在Rt△PEF中,∠PEF=90°,EF=3,PF=6,△PEF(点F和点A重合)的边EF和矩形的边AB在同一直线上.现将Rt△PEF从A以每秒1个单位的速度向射线AB方向匀速平移,当点F与点B重合时停止运动,设运动时间为t秒,
解答下列问题:
(1)如图1,连接PD,填空:∠PFD= ,四边形PEAD的面积是 ;
(2)如图2,当PF经过点D时,求 △PEF运动时间t的值;
(3)在运动的过程中,设△PEF与△ABD重叠部分面积为S,请求出S与t的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点P在AB上,下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=APAB;④ABCP=APCB,能满足△APC与△ACB相似的条件有______________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com