精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数的图像与反比例函数(k>0)的图像交于A,B两点,过点Ax轴的垂线,垂足为M,△AOM面积为1.

(1)求反比例函数的解析式;

(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.

【答案】(1)y=;(2)最小值即为,P(0,).

【解析】

1)根据反比例函数比例系数的几何意义得出,进而得到反比例函数的解析式;

2)作点关于轴的对称点,连接,交轴于点,得到最小时,点的位置,根据两点间的距离公式求出最小值的长;利用待定系数法求出直线的解析式,得到它与轴的交点,即点的坐标.

1反比例函数的图象过点,过点作轴的垂线,垂足为面积为1

故反比例函数的解析式为:

2)作点关于轴的对称点,连接,交轴于点,则最小.

,解得,或

,最小值

设直线的解析式为

,解得

直线的解析式为

时,

点坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图 1 和图 2 所示的不完整统计图

(1) 被调查员工的人数为  人:

(2) 把条形统计图补充完整;

(3) 若该企业有员工 10000 人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ ABC中,∠ACB=90°,AD平分BACAD的垂直平分线EFAD于点E,交BC的延长线于点F,交AB于点G,交AC于点H

(1)依题意补全图形;

(2)求证:∠BAD=∠BFG

(3)试猜想ABFBFD之间的数量关系并进行证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,Rt△中,,点上一点,,过点的垂线交射线于点,延长于点.

(1)求的长;

(2)求的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=mx+n与反比例函数y=其中mn为常数,且mn0,则它们在同一坐标系中的图象可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.

(1)求证:∠DAF=∠CDE;

(2)求证:△ADF∽△DEC;

(3)若AE=6,AD=8,AB=7,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,抛物线y=ax2-x+c经过原点O与点A60)两点,过点AACx轴,交直线y=2x-2于点C,且直线y=2x-2x轴交于点D

1)求抛物线的解析式,并求出点C和点D的坐标;

2)求点A关于直线y=2x-2的对称点A′的坐标,并判断点A′是否在抛物线上,并说明理由;

3)点Pxy)是抛物线上一动点,过点Py轴的平行线,交线段CA′于点Q,设线段PQ的长为l,求lx的函数关系式及l的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中反比例函数yb0)与二次函数yax2+bxa0)的图象大致是(  )

A. B.

C. D.

查看答案和解析>>

同步练习册答案