【题目】四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=5,AB=9,求:
(1)指出旋转中心和旋转角度;
(2)求DE的长度;
(3)BE与DF的位置关系如何?
【答案】(1)旋转中心为点A,旋转角为∠BAD=90°;(2)DE=4;(3)BE⊥DF.
【解析】
(1)根据旋转的性质,点A为旋转中心,对应边AB、AD的夹角为旋转角;
(2)根据旋转的性质可得AE=AF,AD=AB,然后根据DE=AD﹣AE计算即可得解;
(3)根据旋转可得△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF,全等三角形对应角相等可得∠ABE=∠ADF,然后求出∠ABE+∠F=90°,判断出BE⊥DF.
解:(1)旋转中心为点A,旋转角为∠BAD=90°;
(2)∵△ADF按顺时针方向旋转一定角度后得到△ABE,
∴AE=AF=5,AD=AB=9,
∴DE=AD﹣AE=9﹣5=4;
(3)BE、DF的位置关系为:BE⊥DF.理由如下:
∵△ADF按顺时针方向旋转一定角度后得到△ABE,
∴△ABE≌△ADF,
∴BE=DF,∠ABE=∠ADF,
∵四边形ABCD为正方形,
∴∠BAD=90°,
∴∠ADF+∠F=180°﹣∠BAD=90°,
∴∠ABE+∠F=90°,
∴BE⊥DF,
∴BE、DF的位置关系为:BE⊥DF.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC 中,AB 为半圆 O 的直径,AC、BC 分别交半圆 O 于点 E、D,且 BD=DE.
(1)求证:点 D 是 BC 的中点.
(2)若点 E 是 AC 的中点,判断△ABC 的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交A(﹣1,0),B两点,与y轴交于点C(0,3),抛物线的顶点为点E.
(1)求抛物线的解析式;
(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一个动点,当点P运动到点E时,求△PCD的面积;
(3)点N在抛物线对称轴上,点M在x轴上,是否存在这样的点M与点N,使以M,N,C,B为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标(不写求解过程);若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数的图象交坐标轴于 A(﹣1,0),B(4,0),C
(0,﹣4)三点,点 P 是直线 BC 下方抛物线上一动点.
(1) 求这个二次函数的解析式;
(2) 是否存在点 P,使△POC 是以 OC 为底边的等腰三角形?若存在,求出 P 点坐标;若不存在,请说明理由;
(3) 在抛物线上是否存在点 D(与点 A 不重合)使得 S△DBC=S△ABC,若存在,求出点 D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的表达式是y=ax2+(1﹣a)x+1﹣2a(a为不等于0的常数),上述抛物线无论a为何值始终经过定点A和定点B;A为x轴上的点,B为第一象限内的点.
(1)请写出A,B两点的坐标:A( ,0);B( , );
(2)如图1,当抛物线与x轴只有一个公共点时,求a的值;
(3)如图2,当a<0时,若上述抛物线顶点是D,与x轴的另一交点为点C,且点A,B,C,D中没有两个点相互重合.
求:①△ABC能否是直角三角形,为什么?
②若使得△ABD是直角三角形,请你求出a的值.(求出1个a的值即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形的边长都是的正方形网格中,的三个顶点都在小正方形的格点上.将绕点旋转得到(点、分别与点、对应),连接,.
(1)请直接在网格中补全图形;
(2)四边形的周长是________________(长度单位)
(3)直接写出四边形是何种特殊的四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰中,,直线过点且.是上一点,过作垂足为,过作垂足为,已知.
(1)如图①,在直线上有一点,连接,且,求证:;
(2)如图②,将沿方向平移,分别交于,两点,当时,求的面积;
(3)如图③,设直线从点出发沿方向平移的速度为每秒1个单位,与交于点,同时有一动点从点出发以相同的速度向点运动,过作交于,设运动时间为,当到达点时所有运动停止,问是否存在以、、为顶点的三角形是等腰三角形?若存在,直接写出的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com