【题目】如图1,在平面直角坐标系中,,,且.
(1)求点A、B的坐标;
(2)如图1,P点为y轴正半轴上一点,连接BP,若,请求出P点的坐标;
(3)如图2,已知,若C点是x轴上一个动点,是否存在点C,使,若存在,请直接写出所有符合条件的点C的坐标;若不存在,请说明理由.
科目:初中数学 来源: 题型:
【题目】二次函数的部分图象如图,图象过点,对称轴为直线,下列结论:①;②;③;④当时, 的值随值的增大而增大;⑤当函数值时,自变量的取值范围是或.其中正确的结论有__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需个月,则根据题意可列方程中错误的是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】重庆市有五个景区很受游客喜爱,一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图.
该小区居民在这次随机调查中被调查到的人数是_______人, 想去景区的人有_________人, 并补全条形统计图.
被调查到的居民想去 景区旅游的人数最多,若该小区有居民人,估计去该景区旅游的居民约有多少人?
小强同学赞假期间计划与父母从五个景区中,任选两个去旅游,求选至两个景区的概率,(要求列表求概率)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.
(1)求证:BE是⊙O的切线;
(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BGBA=48,FG=,DF=2BF,求AH的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,O是坐标原点,矩形OACB的顶点A、B分别在轴和轴上,已知OA=5,OB=3,点D的坐标是(0,1),点P从点B出发以每秒1个单位的速度沿折线BCA的方向运动,当点P与点A重合时,运动停止,设运动的时间为秒.
(1)点P运动到与点C重合时,求直线DP的函数解析式;
(2)求△OPD的面积S关于的函数解析式,并写出对应的取值范围;
(3)点P在运动过程中,是否存在某些位置使△ADP是不以DP为底边的等腰三角形,若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A,C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF,AD.
探究展示:(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;
②将图1中的正方形CDEF,绕着点C按顺时针方向旋转任意角度α,得到如图2的情形,图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
变式练习:(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图3,且AC=4,BC=3,CD=,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,请判断线段BF、AD所在直线的位置关系,并证明你的判断.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1=∠BDC,∠2+∠3=180°.
(1) 请你判断DA与CE的位置关系,并说明理由;
(2) 若DA平分∠BDC,CE⊥AE于点E,∠1=70°,试求∠FAB的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com