【题目】问题情境:如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A,C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF,AD.
探究展示:(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;
②将图1中的正方形CDEF,绕着点C按顺时针方向旋转任意角度α,得到如图2的情形,图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
变式练习:(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图3,且AC=4,BC=3,CD=,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,请判断线段BF、AD所在直线的位置关系,并证明你的判断.
【答案】(1)①结论:BF=AD,BF⊥AD;②BF=AD,BF⊥AD仍然成立,证明见解析;(2)结论:BF⊥AD,证明见解析.
【解析】试题分析:(1)①证△BCF≌△ACD推出∠CAD=∠FBC,BF=AD,即可得出结论;
②证△BCF≌△ACD推出∠CAD=∠FBC,BF=AD,即可得出结论;
(2)证△BCF∽△ACD,推出∠CBF=∠CAD,再根据∠BHC=∠AHO,∠CBH+∠BHC=90°从而得∠CAD+∠AHO=90°,继而得到∠AOH=90°,得到BF⊥AD.
试题解析:(1)①结论:BF=AD,BF⊥AD;
理由:如图,延长BF交AD于H,
∵△ABC是等腰直角三角形,
∴AC=BC,∠ACB=90°,
∵四边形CDEF是正方形,
∴CD=CF,∠FCD=90°,
∴∠BCF=∠ACD,
在△BCF和△ACD中,
,
∴△BCF≌△ACD(SAS),
∴BF=AD,∠CBF=∠CAD,
又∵∠BFC=∠AFH,∠CBF+∠BFC=90°,
∴∠CAD+∠AFH=90°,
∴∠AHF=90°,
∴BF⊥AD;
∴BF=AD,BF⊥AD;
②BF=AD,BF⊥AD仍然成立,
如图,
∵△ABC是等腰直角三角形,∠ACB=90°,
∴AC=BC,
∵四边形CDEF是正方形,
∴CD=CF,∠FCD=90°,
∴∠ACB+∠ACF=∠FCD+∠ACF,
即∠BCF=∠ACD,
在△BCF和△ACD中,
,
∴△BCF≌△ACD(SAS),
∴BF=AD,∠CBF=∠CAD,
又∵∠BHC=∠AHO,∠CBH+∠BHC=90°,
∴∠CAD+∠AHO=90°,
∴∠AOH=90°,
∴BF⊥AD;
(2)结论:BF⊥AD.
如图,
∵四边形CDEF是矩形,
∴∠FCD=90°,
又∵∠ACB=90°,
∴∠ACB=∠FCD
∴∠ACB+∠ACF=∠FCD+∠ACF,
即∠BCF=∠ACD,
∵AC=4,BC=3,CD=,CF=1,
∴ ,
∴△BCF∽△ACD,
∴∠CBF=∠CAD,
又∵∠BHC=∠AHO,∠CBH+∠BHC=90°
∴∠CAD+∠AHO=90°,
∴∠AOH=90°,
∴BF⊥AD.
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,,,且.
(1)求点A、B的坐标;
(2)如图1,P点为y轴正半轴上一点,连接BP,若,请求出P点的坐标;
(3)如图2,已知,若C点是x轴上一个动点,是否存在点C,使,若存在,请直接写出所有符合条件的点C的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.
(1)如图1,当PQ∥AB时,求PQ的长度;
(2)如图2,当点P在BC上移动时,求PQ长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B两点在反比例函数y=(k>0,x>0)的图像上,AC⊥y轴于点C,BD⊥x轴于点D,点A的横坐标为a,点B的横坐标为b,且a<b.
(1)若△AOC的面积为4,求k值;
(2)若a=1,b=k,当AO=AB时,试说明△AOB是等边三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场计划用3 800元购进节能灯120只,这两种节能灯的进价、售价如下表:
进价(元/只) | 售价(元/只) | |
甲型 | 25 | 30 |
乙型 | 45 | 60 |
(1)求甲、乙两种节能灯各进多少只?
(2)全部售完120只节能灯后,该商场获利润多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).
(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形中,的平分线交于点,交的延长线于点,
(1)写出对由条件推出的相等或互补的角
(2)与相等吗?为什么?
(3)证明:
请在下面的括号内,填上推理的根据,并完成下面的证明:
( ① )
(已证),,( ② )
又(角平分线的定义)
( ③ )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD上,EF与AC相交于点G,∠BDA+∠CEG=180°.
(1)AD与EF平行吗?请说明理由;
(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com