【题目】如图,A、B两点在反比例函数y=(k>0,x>0)的图像上,AC⊥y轴于点C,BD⊥x轴于点D,点A的横坐标为a,点B的横坐标为b,且a<b.
(1)若△AOC的面积为4,求k值;
(2)若a=1,b=k,当AO=AB时,试说明△AOB是等边三角形.
【答案】(1)8;(2)见解析
【解析】
(1) 根据反比例函数系数k的几何意义解答即可得到答案;
(2) 先证明△ACO≌△BDO(SAS),利用全等三角形的性质推知AO=BO.结合已知条件AO=AB得到:AO=BO=AB,故△AOB是等边三角形;
解:(1)根据△AOC的面积为4,得到:
,且k>0
解得:k=8;
(2)由a=1,b=k,可得A(1,k),B(k,1),
∴AC=1,OC=k,OD=k,BD=1,
∴AC=BD,OC=OD,
又∵AC⊥y轴于点C,BD⊥x轴于点D,
∴∠ACO=∠BDO=90°,
∴△ACO≌△BDO(SAS),
∴AO=BO,
又AO=AB,
∴AO=BO=AB,
∴△AOB是等边三角形;
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是边AB上的任意一点(不与点A,B重合),连接DE,作点A关于直线DE的对称点为F,连接EF并延长交BC于点G.
(1)依题意补全图形,连接DG,求∠EDG的度数;
(2)过点E作EH⊥DE交DG的延长线于点H,连接BH.线段BH与AE有怎样的数量关系,请写出结论并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.
(1)求证:BE是⊙O的切线;
(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BGBA=48,FG=,DF=2BF,求AH的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,O是坐标原点,矩形OACB的顶点A、B分别在轴和
轴上,已知OA=5,OB=3,点D的坐标是(0,1),点P从点B出发以每秒1个单位的速度沿折线BCA的方向运动,当点P与点A重合时,运动停止,设运动的时间为
秒.
(1)点P运动到与点C重合时,求直线DP的函数解析式;
(2)求△OPD的面积S关于的函数解析式,并写出对应
的取值范围;
(3)点P在运动过程中,是否存在某些位置使△ADP是不以DP为底边的等腰三角形,若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2016次后,顶点A在整个旋转过程中所经过的路程之和是( )
A. 2015π B. 3019.5π C. 3018π D. 3024π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A,C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF,AD.
探究展示:(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;
②将图1中的正方形CDEF,绕着点C按顺时针方向旋转任意角度α,得到如图2的情形,图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
变式练习:(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图3,且AC=4,BC=3,CD=,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,请判断线段BF、AD所在直线的位置关系,并证明你的判断.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每次移动1个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A2 019的坐标为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】联合国规定每年6月25日是“世界环境日”,某校编写了关于环境保护的个问答题让学生学习,为了解学生对
个问答题的掌握情况,随机抽查了部分学生进行答题测试,并根据测试结果得出下面两个不完整的统计图,请根据统计图提供的信息,回答下列问题(其中
分别表示答对
个题,答对
个题,答对
个题,答对
个题,答对
个题的人数) :
(1)参加测试的学生有多少人?其中“答对个题”的有多少人数?
(2)把条形统计图补充完整;
(3)若该校共有名学生,估计该校能“答对
个题”以上(含
个题)的人数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A1,A2在射线OA上,B1在射线OB上,依次作A2B2∥A1B1 ,A3B2∥A2B1 , A3B3∥A2B2 , A4B3∥A3B2 , ….若△A2B1B2和△A3B2B3的面积分别为1、9,则△A1007B1007A1008的面积是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com