精英家教网 > 初中数学 > 题目详情

【题目】如图,一架2.5米长的梯子AB 斜靠在一座建筑物上,梯子底部与建筑物距离BC 为0.7米.

(1)求梯子上端A到建筑物的底端C的距离(即AC的长);

(2)如果梯子的顶端A沿建筑物的墙下滑0.4米(即AA=0.4米),则梯脚B将外移(即BB的长)多少米?

【答案】(1)梯子上端A到建筑物的底端C的距离为2.4米;(2)梯脚B将外移0.8米.

【解析】

(1)在RtABC中利用勾股定理求出AC的长即可;

(2)由(1)可以得出梯子的初始高度,下滑0.4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为0.7米,可以得出,梯子底端水平方向上滑行的距离.

(1)在△ABC中,∠ACB=90°,AB=2.5,BC=0.7

根据勾股定理可知AC=

答:梯子上端A到建筑物的底端C的距离为2.4米.

(2)在△AˊBˊC中,∠ACB=90°,AˊBˊ=AB=2.5米, AˊC=AC-AAˊ=2.4-0.4=2米

根据勾股定理可知BˊC=

答:梯脚B将外移0.8米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解下列分式方程:

(1)=; (2)-=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列四个图形中,是轴对称图形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠B=90°AB=8cmBC=6cmPQ分别为ABBC边上的动点,点P从点A开始沿AB方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.

1)出发2秒后,求PQ的长;

2)从出发几秒钟后,△PQB能形成等腰三角形?

3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数的图像与轴、轴分别相交于点AB,点P在该函数图像上, P轴、轴的距离分别为

1)当P为线段AB的中点时,求的值;

2)直接写出的范围,并求当时点P的坐标;

3)若在线段AB 上存在无数个P点,使为常数), 求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了了解九年级学生的体能,从九年级学生中随机抽取部分学生进行体能测试,测试的结果分为A、B、C、D四个等级,并根据测试成绩绘制了如下两幅不完整的统计图.
(1)这次抽样调查的样本容量是多少?B等级的有多少人?并补全条形统计图;
(2)在扇形统计图中,C等级对应扇形的圆心角为多少度?
(3)该校九年级学生有1500人,估计D等级的学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:
对于两人的作业,下列说法正确的是(
A.两人都对
B.两人都不对
C.甲对,乙不对
D.甲不对,乙对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图17张长为a,宽为bab)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则ab满足( )

A. a=b B. a=2b

C. a=3b D. a=4b

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰ABC中,三边分别为abc,其中a=4bc恰好是方程的两个实数根,则ABC的周长为___

查看答案和解析>>

同步练习册答案