【题目】如图,在正方形ABCD中,,AE、BF交于点G,下列结论中错误的是( )
A.B.C.D.
【答案】C
【解析】
根据正方形的性质证明△ABE≌△BCF,可得AE⊥BF;AE=BF,再证明△BGE∽△ABE,可得,得出;由S△ABE=S△BFC可得S四边形CEGF=S△ABG.
在正方形ABCD中,AB=BC,∠ABE=∠C=90,
又∵BE=CF,
∴△ABE≌△BCF(SAS),
∴AE=BF,∠BAE=∠CBF,
∴∠FBC+∠BEG=∠BAE+∠BEG=90°,
∴∠BGE=90°,
∴AE⊥BF.
故A、B正确;
∵CF=2FD,∴CF:CD=2:3,
∵BE=CF,AB=CD,
∵∠EBG+∠ABG=∠ABG+∠BAG=90°,
∴∠EBG=∠BAG,
∵∠EGB=∠ABE=90°,
∴△BGE∽△ABE,
故C不正确
∵△ABE≌△BCF,
∴S△ABE=S△BFC,
∴S△ABE-S△BEG=S△BFC-S△BEG,
∴S四边形CEGF=S△ABG,
故D正确.
故选:C.
科目:初中数学 来源: 题型:
【题目】某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.
(1)写出y与x中间的函数关系式和自变量的取值范围;
(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系xOy中,抛物线(b为常数)的对称轴是直线x=1.
(1)求该抛物线的表达式;
(2)点A(8,m)在该抛物线上,它关于该抛物线对称轴对称的点为A',求点A'的坐标;
(3)选取适当的数据填入下表,并在如图5所示的平面直角坐标系内描点,画出该抛物线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形中,是对角线上的一个动点,连接,过点作交于点.
(1)如图①,求证:;
(2)如图②,连接为的中点,的延长线交边于点,当时,求和的长;
(3)如图③,过点作于,当时,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题提出
(1)如图1,的边BC在直线n上,过顶点A作直线m∥n,在直线m上任取一点D连接BD,CD,则的面积_______的面积(填“等于”大于”或“小于”)
问题探究
(2)如图2,在菱形ABCD和菱形BGFE中,,求的面积.
问题解决
(3)如图3在矩形ABCD中,,在矩形ABCD内(可以在边上)存在点P,使得的面积等于矩形ABCD的面积的,求周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的正方形网格中,A(1,7)、B(5,5)、C(7,5)、D(5,1).
(1)将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长;
(2)线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形 ACDE 是证明勾股定理时用到的一个图形,a 、b 、c 是 RtABC和 RtBED 的边长,已知,这时我们把关于 x 的形如二次方程称为“勾系一元二次方程”.
请解决下列问题:
(1)写出一个“勾系一元二次方程”;
(2)求证:关于 x 的“勾系一元二次方程”,必有实数根;
(3)若 x 1是“勾系一元二次方程” 的一个根,且四边形 ACDE 的周长是6,求ABC 的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在梯形ABCD中,AB//CD,AB=12,CD=7,点E在边AD上,,过点E作EF//AB交边BC于点F.
(1)求线段EF的长;
(2)设,,联结AF,请用向量表示向量.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com