精英家教网 > 初中数学 > 题目详情

【题目】如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.

(1)若∠AOB=60°,OM=4,OQ=1,求证:CN⊥OB
(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.
①问:的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.
②设菱形OMPQ的面积为S1 , △NOC的面积为S2 , 求的取值范围.

【答案】
(1)

解:(1)过P作PE⊥OA于E,

∵PQ∥OA,PM∥OB,

∴四边形OMPQ为平行四边形,

∴PM=OQ=1,∠PME=∠AOB=60°,

∴PE=PMsin60°=,ME=

∴CE=OC﹣OM﹣ME=

∴tan∠PCE==

∴∠PCE=30°,

∴∠CPM=90°,

又∵PM∥OB,

∴∠CNO=∠CPM=90°,

则CN⊥OB


(2)

解:

的值不发生变化,理由如下:

设OM=x,ON=y,

∵四边形OMPQ为菱形,

∴OQ=QP=OM=x,NQ=y﹣x,

∵PQ∥OA,

∴∠NQP=∠O,

又∵∠QNP=∠ONC,

∴△NQP∽△NOC,

=,即=

∴6y﹣6x=xy.两边都除以6xy,得=,即=

②过P作PE⊥OA于E,过N作NF⊥OA于F,

则S1=OMPE,S2=OCNF,

=

∵PM∥OB,

∴∠PMC=∠O,

又∵∠PCM=∠NCO,

∴△CPM∽△CNO,

==

==﹣(x﹣3)2+

∵0<x<6,

则根据二次函数的图象可知,0<


【解析】(1)过P作PE⊥OA于E,利用两组对边平行的四边形为平行四边形得到OMPQ为平行四边形,利用平行四边形的对边相等,对角相等得到PM=OQ=1,∠PME=∠AOB=60°,进而求出PE与ME的长,得到CE的长,求出tan∠PCE的值,利用特殊角的三角函数值求出∠PCE的度数,得到PM于NC垂直,而PM与ON平行,即可得到CN与OB垂直;
(2)的值不发生变化,理由如下:设OM=x,ON=y,根据OMPQ为菱形,得到PM=PQ=OQ=x,QN=y﹣x,根据平行得到三角形NQP与三角形NOC相似,由相似得比例即可确定出所求式子的值;
②过P作PE⊥OA于E,过N作NF⊥OA于F,表示出菱形OMPQ的面积为S1 , △NOC的面积为S2 , 得到,由PM与OB平行,得到三角形CPM与三角形CNO相似,由相似得比例求出所求式子的范围即可.
【考点精析】关于本题考查的相似三角形的应用,需要了解测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD.

(1)判断∠FAB与∠C的大小关系,请说明理由;

(2)若∠C35°AB是∠FAD的平分线.

①求∠FAD的度数;

②若∠ADB110°,求∠BDE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l与△ABC在边长为1个单位长度的小正方形网格中,点A,B,C都为网格线的交点.

(1)请画出△ABC关于直线l对称的△A1B1C1(点A,B,C的对称点分别为A1,B1,C1).

(2)请画出将线段AC向左平移3个单位,再向下平移5个单位得到的线段A2C2(点A,C的对应点分别为A2,C2),再以A2C2为斜边画一个等腰直角三角形A2B2C2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线相交于点O,点M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于点E,F,且∠MAN始终保持45°不变.

(1)求证: =
(2)求证:AF⊥FM;
(3)请探索:在∠MAN的旋转过程中,当∠BAM等于多少度时,∠FMN=∠BAM?写出你的探索结论,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题探究:
①新知学习
若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).
②解决问题

已知等边三角形ABC的边长为2.
(1)如图一,若AD⊥BC,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;
(2)如图二,若ME∥BC,且ME是△ABC的一条面径,求面径ME的长;
(3)如图三,已知D为BC的中点,连接AD,M为AB上的一点(0<AM<1),E是DC上的一点,连接ME,ME与AD交于点O,且SMOA=SDOE
①求证:ME是△ABC的面径;
②连接AE,求证:MD∥AE;
(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若将一幅三角板按如图所示的方式放置,则下列结论中不正确的是( )

A. 1=∠3 B. 如果∠230°,则有ACDE

C. 如果∠230°,则有BCAD D. 如果∠230°,必有∠4=∠C

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在四边形ABCD中,AD∥BC,E为边CB延长线上一点,联结DE交边AB于点F,联结AC交DE于点G,且 =
(1)求证:AB∥CD;
(2)如果AD2=DGDE,求证: =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).

(1)求k的值;

(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.

(3)探究:当点P运动到什么位置时,OPA的面积为,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列一元一次方程解应用题:

社会是一个重要的学校和课堂,生活是一种重要的课程和教材,实践是一种重要的学习方式和途径.参加社会生活和社会实践,不仅可以学到很多在课堂上学不到的东西,也可以把课堂上学到的理论知识同社会实践联系起来,加深对课堂学习内容的理解,我区某校七年级学生在农场进行社会实践活动时,采摘了黄瓜和茄子共80千克,了解到这些蔬菜的种植成本共180元,还了解到如下信息:

(1)求采摘的黄瓜和茄子各多少千克?

(2)这些采摘的黄瓜和茄子可赚多少元?

查看答案和解析>>

同步练习册答案