精英家教网 > 初中数学 > 题目详情

【题目】如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).

(1)求k的值;

(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.

(3)探究:当点P运动到什么位置时,OPA的面积为,并说明理由.

【答案】(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为)或(时,三角形OPA的面积为

【解析】

(1)将点E坐标(﹣8,0)代入直线y=kx+6就可以求出k值,从而求出直线的解析式;

(2)由点A的坐标为(﹣6,0)可以求出OA=6,求OPA的面积时,可看作以OA为底边,高是P点的纵坐标的绝对值.再根据三角形的面积公式就可以表示出OPA.从而求出其关系式;根据P点的移动范围就可以求出x的取值范围.

(3)分点P在x轴上方与下方两种情况分别求解即可得.

(1)∵直线y=kx+6过点E(﹣8,0),

∴0=﹣8k+6,

k=

(2)∵点A的坐标为(﹣6,0),

∴OA=6,

点P(x,y)是第二象限内的直线上的一个动点,

∴△OPA的面积S=×6×(x+6)=x+18 (﹣8<x<0);

(3)设点P的坐标为(m,n),则有S△AOP=

解得:n=±

当n==x+6,解得x=

此时点P在x轴上方,其坐标为);

当n=-,-=x+6,解得x=

此时点P在x轴下方,其坐标为),

综上,点P坐标为:)或().

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的顶点A的坐标为(0,﹣1),顶点Bx轴的负半轴上,顶点Cy轴的正半轴上,且∠ABC=90°,ACB=30°,线段OC的垂直平分线分别交OC,BC于点D,E.

(1)C的坐标;

(2)P为线段ED的延长线上的一点,连接PC,PA,设点P的横坐标为t,ACP的面积为S,求St的函数关系式;

(3)(2)的条件下,点F为线段BC的延长线上一点,连接OF,若OF=CP,求∠OFP的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.

(1)若∠AOB=60°,OM=4,OQ=1,求证:CN⊥OB
(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.
①问:的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.
②设菱形OMPQ的面积为S1 , △NOC的面积为S2 , 求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.

(1)求证:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知于点C,AC=4,BC=,将线段AC绕点A按逆时针方向旋转,得到线段AD,连接DC,DB,则线段DB的长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的推理.

如图,BE平分ABD,DE平分BDC,且α+β=90°,试说明:ABCD.

完成推理过程:

BE平分∠ABD(已知)

∴∠ABD2α(__________)

DE平分∠BDC(已知)

∴∠BDC2β (__________)

∴∠ABD+∠BDC2α2β2(α+∠β)( __________)

∵∠α+∠β90°(已知)

∴∠ABD+∠BDC180°(__________)

ABCD(____________________)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角三角形ABC中,∠BAC=90°,AC=8 cm,AD⊥BC于点D.点P从点A出发,沿A→C方向以 cm/s的速度运动到点C停止.在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2

(1)当点M落在AB上时,求x的值;
(2)当点M落在AD上时,PM与CD之间的数量关系是 , 此时x的值是
(3)求y关于x的函数解析式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的二次函数y=(x﹣h)2+3,当1≤x≤3时,函数有最小值2h,则h的值为(
A.
B. 或2
C. 或6
D.2、 或6

查看答案和解析>>

同步练习册答案