精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.

(1)求证:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半径.

【答案】
(1)

证明:连接OD,

∵BC是⊙O的切线,

∴OD⊥BC,又∠C=90°,

∴OD∥AC,

∴∠ODA=∠CAD,

∵OA=OD,

∴∠ODA=∠OAD,

∴∠OAD=∠CAD,即AD平分∠BAC


(2)

解:连接CE,

∵AE是⊙O的直径,

∴∠ADE=90°,

∵∠OAD=∠CAD,tan∠DAC=

∴tan∠EAD=

∵tan∠DAC= ,AC=8,

∴CD=6,

由勾股定理得,AD= =10,

=

解得,DE=

∴AE= =

∴⊙O的半径为


【解析】(1)连接OD,根据切线的性质得到OD⊥BC,根据平行线的性质和等腰三角形的性质证明;(2)连接CE,根据正切的定义和勾股定理求出AD,根据正切的定义计算即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AE∥BC,DE∥AB. 证明:
(1)AE=DC;
(2)四边形ADCE为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线相交于点O,点M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于点E,F,且∠MAN始终保持45°不变.

(1)求证: =
(2)求证:AF⊥FM;
(3)请探索:在∠MAN的旋转过程中,当∠BAM等于多少度时,∠FMN=∠BAM?写出你的探索结论,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若将一幅三角板按如图所示的方式放置,则下列结论中不正确的是( )

A. 1=∠3 B. 如果∠230°,则有ACDE

C. 如果∠230°,则有BCAD D. 如果∠230°,必有∠4=∠C

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在四边形ABCD中,AD∥BC,E为边CB延长线上一点,联结DE交边AB于点F,联结AC交DE于点G,且 =
(1)求证:AB∥CD;
(2)如果AD2=DGDE,求证: =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD外取一点E,连接AEBEDE.过点AAE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②B到直线AE的距离为;③EBED;④SAPD+SAPB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).

(1)求k的值;

(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.

(3)探究:当点P运动到什么位置时,OPA的面积为,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片ABCD(图1)按如下步骤操作:(1)以过点A的直线为折痕

折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图2);(2)以过点E

直线为折痕折叠纸片,使点A落在BC边上,折痕EFAD边于点F(如图3);(3)将纸

片收展平,那么∠AFE的度数为 ( )

A. 60° B. 67.5° C. 72° D. 75°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知BDABC的角平分线请按如下要求操作与解答:

1)过点DDEBCAB于点E.若A=68°AED=42°,求BCD各内角的度数;

2)画ABC的角平分线CFBD于点M,若A=60°,请找出图中所有与A相等的角,并说明理由.

查看答案和解析>>

同步练习册答案