【题目】如图,已知BD为△ABC的角平分线请按如下要求操作与解答:
(1)过点D画DE∥BC交AB于点E.若∠A=68°,∠AED=42°,求△BCD各内角的度数;
(2)画△ABC的角平分线CF交BD于点M,若∠A=60°,请找出图中所有与∠A相等的角,并说明理由.
【答案】(1) ∠DBC =21°,∠C =70°,∠BDC =89°;(2) ∠A=∠BMF=∠CMD=60°.
【解析】
(1)由DE∥BC可知∠AED=∠ABC=42°,根据角平分线的定义可得∠DBC=∠ABC=21°,根据三角形的内角和定理求得∠C和∠BDC的度数即可;(2)因为∠A=60°,根据三角形的内角和定理可得∠ABC+∠ACB=120°,由于BD平分∠ABC,CF平分∠ACB,可得∠MBC+∠MCB=60°,所以∠BMC=120°,由邻补角的定义可得∠BMF=∠CMD=60°.
解:(1)过点D作DE∥BC交AB于点E,
∵DE∥BC,
∴∠AED=∠ABC=42°,
∵BD平分∠ABC,
∴∠DBC=∠ABC=21°,
∴∠C=180°-∠ABC-∠A=70°,
∴∠BDC=180°-∠DBC-∠C=89°.
(2)作△ABC的角平分线CF交BD于点M,
∵∠A=60°,
∴∠ABC+∠ACB=120°,
∴BD平分∠ABC,CF平分∠ACB,
∴∠MBC+∠MCB=(∠ABC+∠ACB)=60°,
∴∠BMC=120°,
∴∠BMF=∠CMD=60°.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.
(1)求证:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角三角形ABC中,∠BAC=90°,AC=8 cm,AD⊥BC于点D.点P从点A出发,沿A→C方向以 cm/s的速度运动到点C停止.在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2)
(1)当点M落在AB上时,求x的值;
(2)当点M落在AD上时,PM与CD之间的数量关系是 , 此时x的值是;
(3)求y关于x的函数解析式,并写出自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,射线OA的方向是北偏东20,射线OB的方向是北偏西40,OD是OB的反向延长线,OC是∠AOD的平分线。
(1)求∠BOC的度数;
(2)求出射线OC的方向。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、B的坐标分别为(4,0)、(0,8),点C是线段OB上一动点,点E在x轴正半轴上,四边形OEDC是矩形,且OE=2OC.设OE=t(t>0),矩形OEDC与△AOB重合部分的面积为S.
根据上述条件,回答下列问题:
(1)当矩形OEDC的顶点D在直线AB上时,求t的值;
(2)当t=4时,求S的值;
(3)直接写出S与t的函数关系式(不必写出解题过程);
(4)若S=12,则t= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,E为OP上一点,则下列结论错误的是( )
A. CE=DEB. ∠CPO=∠DEPC. ∠CEO=∠DEOD. OC=OD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,D是△ABC外一点,连接AD、BD、CD,若∠CDB=90°,BD=3,AD= ,则AC长为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com