【题目】根据图中给出的数轴解答问题:
(1)请你根据图中A,B两点的位置,分别写出他们所表示的有理数为 ;
(2)观察数轴,与点A的距离为4的点表示的数是 ;
(3)如果将数轴折叠,使得点A与表示﹣2的点重合,则点B与表示数 的点重合;
(4)如果数轴上M,N两点之间的距离为2020(M在N的左侧),且M,N两点经过(3)中折叠后互相重合,则M,N两点所表示的数分别是 , .
【答案】(1)1,﹣2.5;(2)﹣3或5;(3)1.5;(4)﹣1010.5,1009.5.
【解析】
(1)(2)观察数轴,直接得出结论;
(3)A点与-2表示的点相距3个单位,其对称点为-0.5,由此得出与B点重合的点;
(4)对称点为-0.5,M点在对称点左边,距离对称点2020÷2=1010个单位,N点在对称点右边,离对称点1010个单位,由此求出M、N两点表示的数.
(1)由数轴可知,A点表示数1,B点表示数﹣2.5.
(2)A点表示数1,与点A的距离为4的点表示的数是:﹣3或5.
(3)当A点与﹣2表示的点重合,则B点与数1.5表示的点重合.
(4)由对称点为﹣0.5,且M、N两点之间的距离为2020(M在N的左侧)可知,
点M、N到﹣1的距离为2020÷2=1010,
所以,M点表示数﹣0.5﹣1010=﹣1010.5,N点表示数﹣0.5+1010=1009.5.
科目:初中数学 来源: 题型:
【题目】如图,边长为6的等边三角形ABC中,D是AB边上的一动点,由A向B运动(A、B不重合),F是BC延长线上的一动点,与D同时以相同的速度由C向BC延长线方向运动(与C不重合),过点D作DE⊥AC,连接DF交AC于G.
(1)当点D运动到AB的中点时,直接写出AE的长.
(2)当DF⊥AB时,求AD的长.
(3)在运动过程中线段GE的长是否发生变化?如果不变,求出线段GE的长:如果发生改变请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,定义直线与双曲线的交点、n为正整数为“双曲格点”,双曲线在第一象限内的部分沿着竖直方向平移或以平行于x轴的直线为对称轴进行翻折之后得到的函数图象为其“派生曲线”.
“双曲格点”的坐标为______; 若线段的长为1个单位长度,则______;
图中的曲线f是双曲线的一条“派生曲线”,且经过点,则f的解析式为______;
画出双曲线的“派生曲线”与双曲线不重合,使其经过“双曲格点”、、.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:已知方程,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则,所以.
把代入已知方程,得.
化简,得: .
这种利用方程根的代替求新方程的方法,我们成为“换根法”,请用阅读材料提供的“换根法”求新方程要求:把所求方程化成一般形式;
(1)已知方程,求一个一元二次方程,使它的根分别是已知方程根的相反数.
(2)已知关于x的一元二次方程有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】泰兴市为进一步改善生态环境决定对街道进行绿化建设,为此准备购进甲、乙两种树木、已知甲种树木的单价为元,乙种树木的单价为元.
(1)若街道购买甲、乙两种树木共花费元,其中,乙种树木是甲种树木的一半多棵,请求出该街道购买的甲、乙两种树木各多少棵;
(2)相关资料表明:甲种树木的成活率为,乙种树木的成活率为.现街道购买甲、乙两种树木共棵,为了使这批树木的总成活率不低于,则甲种树木至多购买多少棵?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知直线,且和之间的距离为,小明同学制作了一个直角三角形硬纸板,其中,,.小明利用这块三角板进行了如下的操作探究:
(1)如图1,若点在直线上,且.求的度数;
(2)若点在直线上,点在和之间(不含、上),边、与直线分别交于点和点.
①如图2,、的平分线交于点.在绕着点旋转的过程中,的度数是否变化?若不变,求出的度数;若变化,请说明理由;
②如图3,在绕着点旋转的过程中,设,,求的取值范
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.如图,一条生产线的流水线上依次有5个机器人,它们站立的位置在数轴上依次用点A1,A2,A3,A4,A5表示.
(1)若原点是零件的供应点,5个机器人分别到供应点取货的总路程是多少?
(2)若将零件的供应点改在A1,A3,A5中的其中一处,并使得5个机器人分别到达供应点取货的总路程最短,你认为应该在哪个点上?通过计算说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图中的折线ABC表示某汽车的耗油量y(L/km)与速度x(km/h)之间的函数关系(30≤x≤120).已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.
(1)当30≤x≤120时,求y与x之间的函数表达式;
(2)该汽车的速度是多少时,耗油量最低?最低是多少.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com