【题目】泰兴市为进一步改善生态环境决定对街道进行绿化建设,为此准备购进甲、乙两种树木、已知甲种树木的单价为元,乙种树木的单价为元.
(1)若街道购买甲、乙两种树木共花费元,其中,乙种树木是甲种树木的一半多棵,请求出该街道购买的甲、乙两种树木各多少棵;
(2)相关资料表明:甲种树木的成活率为,乙种树木的成活率为.现街道购买甲、乙两种树木共棵,为了使这批树木的总成活率不低于,则甲种树木至多购买多少棵?
【答案】(1)甲种树木有棵,乙种树木棵;(2)甲种树木至多购买.
【解析】
(1)设甲种树木x棵,乙种树y棵,关键描述语:甲、乙两种树木共花费34000元,其中,乙种树木是甲种树木的一半多120棵,根据等量关系列出方程并解答;
(2)设甲种树苗购买a棵,则乙种树苗购买(500-a)棵,根据题意可得不等关系:甲种树苗的成活数+乙种树苗的成活数≥92%×500,解可得答案.
(1)设甲种树木有棵,乙种树木有棵,根据题意,得
解得:
答:甲种树木有棵,乙种树木棵.
(2)设甲种树苗购买a棵,则乙种树苗购买(800-a)棵,由题意得:
90%a+95%(500-a)≥92%×500,
解得:a≤300,
∵a为整数,
∴a=300,
答:甲种树苗至多购买300棵.
科目:初中数学 来源: 题型:
【题目】已知有理数a、b在数轴上的对应点如图所示.
(1)已知a=–2.3,b=0.4,计算|a+b|–|a|–|1–b|的值;
(2)已知有理数a、b,计算|a+b|–|a|–|1–b|的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】滴滴快车是一种便捷的出行工具,其计价规则如图:
(注:滴滴快车车费由里程费、时长费、远途费三部分构成,其中里程费按行车的具体时段标准和实际里程计算:时长费按具体时段标准和行车的实际时间计算,远途费的收取方式:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.3元)
(1)小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费 元,傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费 元;
(2)某人06:10出发,乘坐滴滴快车到某地,行驶里程20公里,用时40分钟,需付车费多少元?
(3)某人普通时段乘坐演滴快车到某地,用时30分钟,共花车费39.8元,求他行驶的里程?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,
以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以
算出图1中所有圆圈的个数为1+2+3+…+n=.
如果图中的圆圈共有13层,请解决下列问题:
(1)我们自上往下,在每个圆圈中按图3的方式填上一串连续的正整数1,2,3,4,……,则最底层最左
边这个圆圈中的数是 ;
(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数-23,-22,-21,-20,……,求
最底层最右边圆圈内的数是_______;
(3)求图4中所有圆圈中各数的绝对值之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据图中给出的数轴解答问题:
(1)请你根据图中A,B两点的位置,分别写出他们所表示的有理数为 ;
(2)观察数轴,与点A的距离为4的点表示的数是 ;
(3)如果将数轴折叠,使得点A与表示﹣2的点重合,则点B与表示数 的点重合;
(4)如果数轴上M,N两点之间的距离为2020(M在N的左侧),且M,N两点经过(3)中折叠后互相重合,则M,N两点所表示的数分别是 , .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和( )
A. 大于0 B. 等于0 C. 小于0 D. 不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,规定岗亭为原点,向北为正,这段时间行驶记录如下(单位:千米) +10,-9,+7,-15,+6,-14,+4,-2
(1)最后停留的地方在岗亭的哪个方向?距离岗亭多远?
(2)若摩托车行驶,每千米耗油0.06升,每升6.2元,且最后返回岗亭,这一天耗油共需多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把具有某种规律的一列数:1,-2,3,-4,5,-6,...,排列成下面的阵形:
........
探索下列事件:
(1)第10行的第1个数是什么数?
(2)数字2019前面是负号还是正号?在第几行?第几列?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,E是CB延长线上一个动点,F、G分别为AE、BC的中点,FG与ED相交于点H.
(1)求证:HE=HG;
(2)如图2,当BE=AB时,过点A作AP⊥DE于点P,连接BP,求PQ与PB的数量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com