精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠B=90°BC>AB,在BC边上取点D,使AB=BD,构造正方形ABDEDEAC于点F,作EGACAC于点G,交BC于点H

(1)求证:AEF≌△EDH

(2)AB=3DH=2DF,求BC的长.

【答案】(1)证明见解析;(2)4.5

【解析】

1)根据正方形的性质,通过“角边角”即可得证;

2)设DF=x,则DH=2x,由(1)可得ED=EF+DF=3x=AB,易证△DFC∽△BAC,则,求得DC=,进而求得BC的长.

证明:(1)∵四边形ABDE是正方形,

∴AE=DE∠AED=∠EDH=90°

∵EG⊥AC

∴∠AGE=90°

∴∠GAE+∠AEG=∠AEG+∠DEH=90°

∴∠GAE=∠DEH

△AEF△EDH中,

,

∴△AEF≌△EDHASA);

(2)DF=x,则DH=2x

∵△AEF≌△EDH

∴EF=DH=2x

∴ED=EF+DF=3x=AB

四边形ABDE是正方形,

∴AB∥DF

∴△DFC∽△BAC

∵BD=3

∴DC=

∴BC=BD+CD=3+=4.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y轴交于点C0,2),它的顶点为D1,m),且.

1)求m的值及抛物线的表达式;

2)将此抛物线向上平移后与x轴正半轴交于点A,与y轴交于点B,且OA=OB.若点A是由原抛物线上的点E平移所得,求点E的坐标;

(3)在(2)的条件下,点P是抛物线对称轴上的一点(位于x轴上方),且APB=45°.求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图①,②,在矩形ABCD中,AB=4BC=8PQ分别是边BCCD上的点.

(1)如图①,若APPQBP=2,求CQ的长;

(2)如图②,若=2,且EFG分别为APPQPC的中点,求四边形EPGF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是圆O的一条弦,点O在线段AC上,AC=ABOC=3sinA=.求:(1)O的半径长;(2)BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E为边CD的中点,AEBD于点O,若SDOE=2,则平行四边形ABCD的面积为( )

A. 8B. 12C. 16D. 24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线ACBD交于点O,以OB为直径画圆M,过D作⊙M的切线,切点为N,分别交ACBC于点EF,已知AE=5CE=3,则菱形ABCD的面积是( )

A. 24B. 20C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABO中,∠BAO90°AOABBO8,点A的坐标(﹣80),点C在线段AO上以每秒2个单位长度的速度由AO运动,运动时间为t秒,连接BC,过点AADBC,垂足为点E,分别交BO于点F,交y轴于点 D

1)用t表示点D的坐标   

2)如图1,连接CF,当t2时,求证:∠FCO=∠BCA

3)如图2,当BC平分∠ABO时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在正方形ABCD中,以AB为边向正方形外作等边三角形ABE,连接CEBD交于点G,连接AG,那么∠AGD的底数是______度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.

(1)求证:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度数.

查看答案和解析>>

同步练习册答案