【题目】如图,四边形 OAA1B1 是边长为 1 的正方形,以对角线 OA1 为边作第二个正方形 OA1A2B2,连接 AA2,得到△ AA1A2;再以对角线 OA2 为边作第三个正方形 OA2A3B3,连接 A1A3,得到△A1A2A3;再以对角线 OA3 为边作第 四个正方形,连接 A2A4,得到△A2A3A4……记△AA1A2、△A1A2A3、△A2A3A4 的面积分别为 S1、S2、S3,如此下 去,则 S2019=_____ .
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=﹣x+b(b>0)交x轴,y轴于点M,N,点A,B是OM,ON上的点,以AB为边作正方形ABCD,CD恰好落在MN上,已知AB=2,则b的值为( )
A.1+B.C.D.2+
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的图象经过点A(2,-8),求:
(1)该抛物线的解析式;
(2)判断点B(3,-18)是否在该抛物线上;
(3)求出此抛物线上纵坐标是-50的点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种商品,成本价为50元/千克,规定每千克售价不低于成本价,且不高于85元.经过市场调查,该商品每天的销售量(千克)与售价(元/千克)满足一次函数关系,部分数据如下表:
售价(元/千克) | 50 | 60 | 70 |
销售量(千克) | 120 | 100 | 80 |
(1)求与之间的函数表达式.
(2)设该商品每天的总利润为(元),则当售价定为多少元/千克时,超市每天能获得最大利润?最大利润是多少元?
(3)如果超市要获得每天不低于1600元的利润,且符合超市自己的规定,那么该商品的售价的取值范围是多少?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】年我国个人所得税征收办法最新规定:月收入不超过元的部分不收税;月收入超过元但不超过元的部分征收的所得税;月收入超过元但不超过元的部分征收的所得税国家特别规定月收入指个人工资收入扣除专项附加费后的实际收入(专项附加费就是子女教育费用、住房贷款利息费用、租房的租金、赡养老人、大病医疗费用等费用).如某人月工资收入元,专项附加费支出元,他应缴纳个人所得税为:(元).
(1)当月收入超过元而又不超过元时,写出应缴纳个人所得税(元)与月收入(元)之间的关系式;
(2)如果某人当月专项附加费支出元,缴纳个人所得税元,那么此人本月工资是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,AB=10,连接BD,点P是射线BC上一点(不与点B重合),AP与对角线BD交于点E,连接EC.
(1)求证:AE=CE;
(2)若sin∠ABD=,当点P在线段BC上时,若BP=4,求△PEC的面积;
(3)若∠ABC=45°,当点P在线段BC的延长线上时,请直接写出△PEC是等腰三角形时BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平而直角坐标系中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于A、B两点.正方形ABCD的项点C、D在第一象限,顶点D在反比例函数y=(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是( )
A.2B.3C.4.D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D,E两点分别在AC,BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现:当α=0°时,的值为 ;
(2)拓展探究:当0°≤α<360°时,若△EDC旋转到如图2的情况时,求出的值;
(3)问题解决:当△EDC旋转至A,B,E三点共线时,若设CE=5,AC=4,直接写出线段BE的长 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图1,对于直线同侧的、两点,若在上的点满足,则称为、两点在上的反射点,与的和称为、两点的反射距离.
(1)如图2,在边长为2的正方形中,为的中点,为、两点在直线上的反射点,求、两点的反射距离;
(2)如图3,内接于,直径为4,,点为劣弧上一动点,点为、两点在上的反射点,当、两点的反射距离最大时,求劣弧的长;
(3)如图4,在平面直角坐标系中,抛物线与轴正半轴交于点,顶点为,若点为点、在上的反射点,同时点为点、在上的反射点.
①请判断线段和的位置关系,并给出证明;
②求、两点的反射距离与、两点的反射距离的比值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com