精英家教网 > 初中数学 > 题目详情
10.先化简:($\frac{1}{a}$-$\frac{2}{a-1}$)÷$\frac{a^2+a}{1-2a+a^2}$,再从1、-1、0和$\sqrt{2}$选取一个合适的数作为a的值代入求值.

分析 先将原式化简,然后将a=$\sqrt{2}$代入化简后的式子,即可求得相应的值,注意本题的原式要有意义,则分母不等于0,除式不等于0,从而可以发现a不等于1、-1、0.

解答 解:($\frac{1}{a}$-$\frac{2}{a-1}$)÷$\frac{a^2+a}{1-2a+a^2}$
=$\frac{a-1-2a}{a(a-1)}×\frac{(a-1)^{2}}{a(a+1)}$
=$\frac{-(a+1)}{a(a-1)}×\frac{(a-1)^{2}}{a(a+1)}$
=$\frac{1-a}{{a}^{2}}$,
当a=$\sqrt{2}$时,原式=$\frac{1-\sqrt{2}}{(\sqrt{2})^{2}}$=$\frac{1-\sqrt{2}}{2}$.

点评 本题考查分式的化简求值,解题的关键是明确题意,选取合适的a的值,注意挖掘题目中的隐含条件,原式中的分母和除式都不等于0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.育才中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.
(1)如果从3名候选主持人中随机选拔1名主持人,选到女生的概率为$\frac{1}{3}$.
(2)如果从3名候选主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.向量($\overrightarrow{AB}$+$\overrightarrow{MB}$)+($\overrightarrow{BO}$+$\overrightarrow{BC}$)+$\overrightarrow{OM}$化简后的结果等于(  )
A.$\overrightarrow{BC}$B.$\overrightarrow{AB}$C.$\overrightarrow{AC}$D.$\overrightarrow{AM}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.阅读材料:
材料1:x1,x2是一元二次方程ax2+bx+c=0的两根,则x1,x2与系数a,b,c有如下关系:
$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=-\frac{b}{a}}\\{{x}_{1}•{x}_{2}=\frac{c}{a}}\end{array}\right.$,我们称之为韦达定理.
材料2:设a2+1=3a,b2+1=3b.且a≠b,则代数式$\frac{1}{a}$+$\frac{1}{b}$的值为3
解:对于a2+1=3a,b2+1=3b两个方程.我们可以把a,b看作是一元二次方程x2-3x+1=0两个根,由韦达定理可得:a+b=3,ab=1
所以:$\frac{1}{a}$+$\frac{1}{b}$=$\frac{b+a}{ab}$=$\frac{3}{1}$=3
回答下列问题:
(1)设a2-2a-1=0,b2-2b-1=0,且a≠b,则a+b=2
(2)设m2-2m+a=0,n4-2n2+a=0,且$\frac{1}{{n}^{2}}$+$\frac{1}{m}$=-2.则a=-1
(3)已知a,b是正整数,且ab+a+b=9,a2b+ab2=20,求a2+b2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解方程组$\left\{\begin{array}{l}{y+z=3}\\{x+2y+z=8}\\{x+y+2z=7}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知方程$\frac{x}{x+1}$+$\frac{x+6}{x+7}$=$\frac{x+1}{x+2}$+$\frac{x+5}{x+6}$的解是x=-4,试求出$\frac{x+62}{x+63}$+$\frac{x+68}{x+69}$=$\frac{x+63}{x+64}$+$\frac{x+67}{x+68}$的解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在等边△ABC中,D、E分别为AB、BC边上的动点,满足AD=2BE,将线段DE绕点E顺时针旋转60°得线段EF,求证:CF平分∠ACB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.若关于x的不等式组$\left\{\begin{array}{l}{3x-1>a+1}\\{2-x>1-2a}\end{array}\right.$无解,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.大于-$\sqrt{3}$小于$\sqrt{18}$的所有整数的和是9.

查看答案和解析>>

同步练习册答案