【题目】如图,△ABC中,AB = AC,AD、AE分别是∠BAC和∠BAC外角的平分线,.
(1)求证:DA⊥AE;
(2)试判断AB与DE是否相等?并证明你的结论.
【答案】(1)证明见解析;(2)AB=DE.证明见解析.
【解析】
试题(1)、根据角平分线的性质可得∠BAD=∠BAC,∠BAE=∠BAF,根据平角的性质可以得出结论;(2)、根据等于三角形的三线合一定理说明∠ADB=90°,根据三个角是直角的四边形为矩形得出ADBE为矩形,最后根据矩形的对角线的性质说明结论.
试题解析:(1)、∵AD、AE分别为角平分线 ∴∠BAD=∠BAC,∠BAE=∠BAF
∵∠BAC+∠BAF=180° ∴∠BAD+∠BAE=(∠BAC+∠BAF)=90° ∴DA⊥AE
、∵AB=AC AD为角平分线 ∴AD⊥BC 即∠ADB=90°
∵BE⊥AE ∴∠BEA=90° 又∵∠DAE=90° ∴四边形ADBE为矩形 ∴AB=DE
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△DEB中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 1800元 |
第二周 | 4台 | 10台 | 3100元 |
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一块长、宽、高分别为6cm、4cm、3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是( )
A. cm B. cm C. cm D. 9cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对非负实数x“四舍五入”到个位的值记为<x>,即当n为非负整数时,若,则<x>=n,如<0.46>=0,<3.67>=4。给出下列关于<x>的结论:
①<1.493>=1;
②<2x>=2<x>;
③若,则实数x的取值范围是;
④当x≥0,m为非负整数时,有;
⑤。
其中,正确的结论有 (填写所有正确的序号)。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式,属于二元一次方程的个数有( )
①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2;⑥6x﹣2y;⑦x+y+z=1;⑧y(y﹣1)=2x2﹣y2+xy
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,点E是边CD的中点,连接BE并延长,交AD延长线于点F,连接BD、CF.
(1)求证:△CEB≌△DEF;
(2)若AB=BF,试判断四边形BCFD的形状,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )
A.94B.85C.84D.76
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积.
(经验发展)面积比和线段比的联系:
(1)如图1,M为△ABC的AB上一点,且BM=2AM.若△ABC的面积为a,若△CBM的面积为S,则S=_______(用含a的代数式表示).
(结论应用)(2)如图2,已知△CDE的面积为1,,,求△ABC的面积.
(迁移应用)(3)如图3.在△ABC中,M是AB的三等分点(),N是BC的中点,若△ABC的面积是1,请直接写出四边形BMDN的面积为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com