【题目】如图1,在平面直角坐标系中,直线AB与y轴交于点,与x轴交于点B,,直线CD与y轴交于点D,与x轴交于点,,直线AB与直线CD交于点Q,E为直线CD上一动点,过点E作x轴的垂线,交直线AB于点M,交x轴于点N,连接AE、BE.
求直线AB、CD的解析式及点Q的坐标;
当E点运动到Q点的右侧,且的面积为时,在y轴上有一动点P,直线AB上有一动点R,当的周长最小时,求点P的坐标及周长的最小值.
在问的条件下,如图2将绕着点B逆时针旋转得到,使点M与点G重合,点N与点H重合,再将沿着直线AB平移,记平移中的为,在平移过程中,设直线与x轴交于点F,是否存在这样的点F,使得为等腰三角形?若存在,求出此时点F的坐标;若不存在,说明理由
【答案】(1)点Q坐标为;(2)周长的最小值,最小值为;(3)点F的坐标为.
【解析】
,直线CD表达式的k值为,即可求解直线CD的表达式;同理可得直线AB的表达式,联立两个表达式,即可求解点Q的坐标;
,求出点N坐标;作N点的两个对称点、,连接交AB于点R交y轴于点P,此时,周长的最小值,求解即可;
是底角为的当腰三角形,为等腰三角形,即可求解.
点,,,直线CD表达式的k值为,
则直线CD的表达式为:,将点C坐标代入上式并解得:,
故:直线CD的表达式为:,
同理可得直线AB的表达式为:,,
联立并解得:,即点Q坐标为;
如图所示,设点E的坐标为,则点,
,
解得:,即点N坐标为,点,
作点N关于直线AB和y轴的对称点、,连接交AB于点R交y轴于点P,
此时,周长的最小值,最小值为:的长度,
,关于直线AB对称,,
为边长为3的等边三角形,三角形高为:,
则点的坐标为,点,
则直线的表达式为:,即点P坐标,
周长的最小值,最小值为;
如图2,将绕着点B逆时针旋转得到,
此时,即点GM关于x轴对称,则点,,
图形平移为 时,,
即是底角为的等腰三角形,而为等腰三角形,只能,
,,
故点F的坐标为.
科目:初中数学 来源: 题型:
【题目】阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于1<<2,所以的整数部分为1,将减去其整数部分1,差就是小数部分,根据以上的内容,解答下面的问题:
(1)的整数部分是______,小数部分是______;
(2)的整数部分是______,小数部分是_____;
(3)若设整数部分是x,小数部分是y,求x﹣y的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式,能用平方差公式计算的是( )
A.(2a+b)(2b﹣a)B.(+1)(﹣-1)
C.(2a﹣3b)(﹣2a+3b)D.(﹣a﹣2b)(﹣a+2b)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】重庆某油脂公司生产销售菜籽油、花生油两种食用植物油.
(1)已知花生的出油率为56%,是菜籽的1.4倍,现有菜籽、花生共100吨,若想得到至少52吨植物油,则其中的菜籽至多有多少吨?
(2)在去年的销售中,菜籽油、花生油的售价分别为20元/升,30元/升,且销量相同,今年由于花生原材料价格上涨,花生油的售价比去年提高了a%,菜籽油的售价不变,总销量比去年降低a%,且菜籽油、花生油的销量均占今年总销量的,这样,预计今年的销售总额比去年下降a%,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,抛物线的顶点为点D,过点B作BC的垂线,交对称轴于点E.
(1)求证:点E与点D关于x轴对称;
(2)点P为第四象限内的抛物线上的一动点,当△PAE的面积最大时,在对称轴上找一点M,在y轴上找一点N,使得OM+MN+NP最小,求此时点M的坐标及OM+MN+NP的最小值;
(3)如图2,平移抛物线,使抛物线的顶点D在射线AD上移动,点D平移后的对应点为D′,点A的对应点A′,设抛物线的对称轴与x轴交于点F,将△FBC沿BC翻折,使点F落在点F′处,在平面内找一点G,若以F′、G、D′、A′为顶点的四边形为菱形,求平移的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.
(1)这部分男生有多少人?其中成绩合格的有多少人?
(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?
(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请阅读某同学解下面分式方程的具体过程.
解方程
解:①
②
③
∴④
∴.
把代入原方程检验知是原方程的解.
请你回答:
(1)得到①式的做法是 ;
得到②式的具体做法是 ;
得到③式的具体做法是 ;
得到④式的根据是 .
(2)上述解答正确吗?如果不正确,从哪一步开始出现错误?答: .错误的原因是 (若第一格回答“正确”的,此空不填).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(1)求足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是( )
A.①②③ B.①②④ C.①③④ D.①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com