【题目】在中,,,,、、是的三条内角平分线.那么,的面积等于________.
【答案】
【解析】
过点F作FQ⊥AC,过点E作EN⊥AB,EM⊥BC,过点D作DH⊥AC,可得四边形NBME是正方形,设NE=m,根据S四边形NBME+S△ANE+S△CEM=S△ABC,可求得m的值;设BF=n,根据S△AFQ+2S△BFC=S△ABC,可求得n的值,同理可求得BD的值,然后利用S△DEF=S△ABC-S△AEF-S△BFD-S△CDE,将所得数值代入进行计算即可得.
过点F作FQ⊥AC,过点E作EN⊥AB,EM⊥BC,过点D作DH⊥AC,
∵BE平分∠ABC,∠ABC=90°,
∴四边形NBME是正方形,
设NE=m,则S四边形NBME+S△ANE+S△CEM=S△ABC,
∴m2+m(4-m)+ m(3-m)=×3×4,
解得:m=;
设BF=n,根据CF平分∠ACB,可得△QFC≌△BFC,
则S△AFQ+2S△BFC=S△ABC,
∴n×1+2×n×4=×3×4,
解得:n=,
则AF=AB-n=,
设BD=p,
同理可得p=,
则CD=4-=,
∴S△DEF=S△ABC-S△AEF-S△BFD-S△CDE
=ABBC-AFNE-BFFD-CDEM
=6-
=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是( )
A.甲车的速度是80km/hB.乙车的速度是60km/h
C.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离 B地10km
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1中是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,从侧面看图2,立柱DE高1.7m,AD长0.3m,踏板静止时从侧面看与AE上点B重合,BE长0.2m,当踏板旋转到C处时,测得∠CAB=42°,求此时点C距离地面EF的高度.(结果精确到0.1m)(参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.
(1)求证:四边形CEDF是平行四边形;
(2)①当AE= cm时,四边形CEDF是矩形;②当AE= cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学课上,李老师出示了如下框中的题目.
在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图.试确定线段AE与DB的大小关系,并说明理由. |
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:
AE DB(填“>”,“<”或“=”).
图1 图2
(2)特例启发,解答题目
解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).
理由如下:如图2,过点E作EF∥BC,交AC于点F.
(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是( )
A. AD+BC=AB B. 与∠CBO互余的角有两个
C. ∠AOB=90° D. 点O是CD的中点
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点A,B,C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′
(2)三角形ABC的面积为 ;
(3)在直线l上找一点P,使PA+PB的长最短.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】勾股定理在平面几何中有着不可替代的重要地位,在我国古算书(周髀算经》中就有“若勾三,股四,则弦五”的记载,如图1是由边长均为1的小正方形和Rt△ABC构成的,可以用其面积关系验证勾股定理,将图1按图2所示“嵌入”长方形LMJK,则该长方形的面积为( )
A.120B.110C.100D.90
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角△ABC中,∠BAC=90°,AB=AC,∠ADB=45°
(1)求证:BD⊥CD;
(2)若BD=6,CD=2,求四边形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com