精英家教网 > 初中数学 > 题目详情

【题目】中,的三条内角平分线.那么,的面积等于________

【答案】

【解析】

过点FFQAC,过点EENAB,EMBC,过点DDHAC,可得四边形NBME是正方形,设NE=m,根据S四边形NBME+SANE+SCEM=SABC,可求得m的值;设BF=n,根据SAFQ+2SBFC=SABC,可求得n的值,同理可求得BD的值,然后利用SDEF=SABC-SAEF-SBFD-SCDE,将所得数值代入进行计算即可得.

过点FFQAC,过点EENAB,EMBC,过点DDHAC,

BE平分∠ABC,ABC=90°,

∴四边形NBME是正方形,

NE=m,S四边形NBME+SANE+SCEM=SABC

m2+m(4-m)+ m(3-m)=×3×4,

解得:m=

BF=n,根据CF平分∠ACB,可得QFCBFC,

SAFQ+2SBFC=SABC

n×1+2×n×4=×3×4,

解得:n=

AF=AB-n=

BD=p,

同理可得p=

CD=4-=

SDEF=SABC-SAEF-SBFD-SCDE

=ABBC-AFNE-BFFD-CDEM

=6-

=

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是(  )

A.甲车的速度是80km/hB.乙车的速度是60km/h

C.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离 B10km

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1中是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,从侧面看图2,立柱DE1.7m,AD0.3m,踏板静止时从侧面看与AE上点B重合,BE0.2m,当踏板旋转到C处时,测得∠CAB=42°,求此时点C距离地面EF的高度.(结果精确到0.1m)(参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,AB=3cmBC=5cmB=60°GCD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CEDF

1)求证:四边形CEDF是平行四边形;

2AE= cm时,四边形CEDF是矩形;AE= cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,李老师出示了如下框中的题目.

在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图.试确定线段AE与DB的大小关系,并说明理由.

小敏与同桌小聪讨论后,进行了如下解答:

(1)特殊情况,探索结论

当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:

AE DB(填“>”,“<”或“=”).

图1 2

(2)特例启发,解答题目

解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).

理由如下:如图2,过点E作EFBC,交AC于点F.

(请你完成以下解答过程)

(3)拓展结论,设计新题

在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若ABC的边长为1,AE=2,求CD的长(请你直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点AB分别是∠NOPMOP平分线上的点,ABOP于点EBCMN于点CADMN于点D,下列结论错误的是(  )

A. ADBCAB B. 与∠CBO互余的角有两个

C. AOB=90° D. OCD的中点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点ABC在小正方形的顶点上.

1)在图中画出与ABC关于直线l成轴对称的ABC

2)三角形ABC的面积为   

3)在直线l上找一点P,使PA+PB的长最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理在平面几何中有着不可替代的重要地位,在我国古算书(周髀算经》中就有若勾三,股四,则弦五的记载,如图1是由边长均为1的小正方形和RtABC构成的,可以用其面积关系验证勾股定理,将图1按图2所示嵌入长方形LMJK,则该长方形的面积为( )

A.120B.110C.100D.90

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰直角ABC中,∠BAC90°ABAC,∠ADB45°

1)求证:BDCD

2)若BD6CD2,求四边形ABCD的面积.

查看答案和解析>>

同步练习册答案