精英家教网 > 初中数学 > 题目详情
19.解方程:$\frac{x}{x-1}$=2-$\frac{3}{2x-2}$.

分析 分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

解答 解:去分母得:2x=4x-4-3,
解得:x=3.5,
经检验x=3.5是分式方程的解.

点评 此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,在△ABC中,∠B=30°,∠C=50°,AE是∠BAC的平分线,AD是高.
(1)求∠BAE的度数;     
 (2)求∠EAD的度数;
(3)△ABC中,若∠B=α,∠C=β(α<β),请你根据(1)问的结果大胆猜想∠DAE与α,β间的等量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.观察下列算式:$\frac{1}{\sqrt{2}+1}$=$\frac{(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\frac{(\sqrt{2}-1)}{1}$=$\sqrt{2}-1$
$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\frac{\sqrt{3}-\sqrt{2}}{1}$=$\sqrt{3}-\sqrt{2}$
$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{(\sqrt{4}-\sqrt{3})}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=$\frac{\sqrt{4}-\sqrt{3}}{1}$=$\sqrt{4}-\sqrt{3}$
(1)根据你发现的规律填空:$\frac{1}{\sqrt{2015}+\sqrt{2014}}$=$\sqrt{2015}$-$\sqrt{2014}$,$\frac{1}{\sqrt{n}+\sqrt{n-1}}$=$\sqrt{n}$-$\sqrt{n-1}$.
(2)对比下面的算式与上面的有何异同,根据你的观察、猜想与验证,计算:
($\frac{1}{\sqrt{3}+1}+$$\frac{1}{\sqrt{5}+\sqrt{3}}$+$\frac{1}{\sqrt{7}+\sqrt{5}}$…+$\frac{1}{\sqrt{2015}+\sqrt{2013}}$)×($\sqrt{2015}+1$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,⊙O中,弦AB与CD交于点M,∠C=35°,∠AMD=75°,则∠D的度数是(  )
A.25°B.35°C.40°D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.一个不透明的袋子里装着6个黄球,10个黑球和14个红球,他们除了颜色外完全相同.
(1)小明和小颖玩摸球游戏,规定每人摸球一次再将球放回为依次游戏,若摸到黑球则小明获胜,摸到黄球则小颖获胜,这个游戏公平吗?说说你的理由.
(2)现在裁判向袋子中放入若干个红球,大量重复试验后,发现小明获胜的频率稳定在0.25附近,问裁判放入了多少个红球?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,在△ABC中,BD平分∠ABC,DE⊥AB交AB于点E,DF⊥BC交BC于点F,若AB=12cm,BC=18cm,S△ABC=90cm2,则DF长为(  )
A.3cmB.6cmC.9cmD.12cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t>0)秒.
(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD=3tcm,CE=tcm;
(2)当t为多少时,△ABD的面积为12 cm2
(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.阅读下列材料:
按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为an
一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.
然后解决下列问题.
(1)等比数列3,6,12,…的公比q为2,第4项是24.
(2)如果已知一个等比数列的第一项(设为a1)和公比(设为q),则根据定义我们可依次写出这个数列的每一项:a1,a1q,a1•q2,a1•q3,….由此可得第n项an=a1•qn-1(用a1和q的代数式表示).
(3)若一等比数列的公比q=2,第2项是10,求它的第1项与第4项.
(4)已知一等比数列的第3项为12,第6项为96,求这个等比数列的第10项.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,在平面直角坐标系中,直线y=k1x与双曲线y=$\frac{{k}_{2}}{x}$相交于点A(2,1)与点E,AB⊥x轴,垂足为点B.
(1)求直线y=k1x与双曲线y=$\frac{{k}_{2}}{x}$的表达式;
(2)根据图象直接写出不等式k1x>$\frac{{k}_{2}}{x}$的解集:-2<x<0或x>2;
(3)如图2,点P(x,0)是x轴正半轴上的一个动点,过点P的直线l⊥x轴,分别与直线y=k1x、双曲线y=$\frac{{k}_{2}}{x}$交于点C,D,连接AD.
①当点P在线段OB上(不与点O,B重合时),设△ACD的面积为S,求S与x的函数关系式,并写出自变量的取值范围;
②在坐标平面内是否存在点Q,使得以A,B,C,Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案