【题目】如图,直线y=﹣x﹣4与抛物线y=ax2+bx+c相交于A,B两点,其中A,B两点的横坐标分别为﹣1和﹣4,且抛物线过原点.
(1)求抛物线的解析式;
(2)在坐标轴上是否存在点C,使△ABC为等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)若点P是线段AB上不与A,B重合的动点,过点P作PE∥OA,与抛物线第三象限的部分交于一点E,过点E作EG⊥x轴于点G,交AB于点F,若S△BGF=3S△EFP,求的值.
【答案】(1)抛物线解析式为y=x2+4x;(2)存在满足条件的点C,其坐标为(0,﹣3﹣)或(0,﹣3﹣)或(﹣4+3,0)或(﹣4﹣3,0)或(﹣1,0)或(0,1)或(2,0)或(0, )或(0,﹣);(3).
【解析】试题分析:(1)由直线解析式可分别求得A、B两点的坐标,利用待定系数法可求得抛物线解析式;
(2)当AB=AC时,点C在y轴上,可表示出AC的长度,可求得其坐标;当AB=BC时,可知点C在x轴上,可表示出BC的长度,可求得其坐标;当AC=BC时点C在线段AB的垂直平分线与坐标轴的交点处,可求得线段AB的中点的坐标,可求得垂直平分线的解析式,则可求得C点坐标;
(3)过点P作PQ⊥EF,交EF于点Q,过点A作AD⊥x轴于点D,可证明△PQE∽△ODA,可求得EQ=3PQ,再结合F点在直线AB上,可求得FQ=PQ,则可求得EF=4PQ,利用三角形的面积的关系可求得GF与PQ的关系,则可求得比值.
试题解析:(1)∵A,B两点在直线y=﹣x﹣4上,且横坐标分别为﹣1、﹣4,
∴A(﹣1,﹣3),B(﹣4,0),
∵抛物线过原点,
∴c=0,
把A、B两点坐标代入抛物线解析式可得 ,解得 ,
∴抛物线解析式为y=x2+4x;
(2)∵△ABC为等腰三角形,
∴有AB=AC、AB=BC和CA=CB三种情况,
①当AB=AC时,当点C在y轴上,设C(0,y),
则AB= =3 ,AC=,
∴3=,解得y=﹣3﹣ 或y=﹣3+,
∴C(0,﹣3﹣)或(0,﹣3﹣);
当点C在x轴上时,设C(x,0),则AC=,
∴=3,解得x=﹣4或x=2,当x=﹣4时,B、C重合,舍去,
∴C(2,0);
②当AB=BC时,当点C在x轴上,设C(x,0),
则有AB=3,BC=|x+4|,
∴|x+4|=3,解得x=﹣4+3或x=﹣4﹣3,
∴C(﹣4+3,0)或(﹣4﹣3,0);
当点C在y轴上,设C(0,y),则BC=,
∴=3,解得y=或y=﹣,
∴C(0, )或(0,﹣);
③当CB=CA时,则点C在线段AB的垂直平分线与y轴的交点处,
∵A(﹣1,﹣3),B(﹣4,0),
∴线段AB的中点坐标为(﹣,﹣),
设线段AB的垂直平分线的解析式为y=x+d,
∴﹣=﹣+d,解得d=1,
∴线段AB的垂直平分线的解析式为y=x+1,
令x=0可得y=1,令y=0可求得x=﹣1,
∴C(﹣1,0)或(0,1);
综上可知存在满足条件的点C,其坐标为(0,﹣3﹣)或(0,﹣3﹣)或(﹣4+3,0)或(﹣4﹣3,0)或(﹣1,0)或(0,1)或(2,0)或(0, )或(0,﹣);
(3)过点P作PQ⊥EF,交EF于点Q,过点A作AD⊥x轴于点D,
∵PE∥OA,GE∥AD,
∴∠OAD=∠PEG,∠PQE=∠ODA=90°,
∴△PQE∽△ODA,
∴ =3,即EQ=3PQ,
∵直线AB的解析式为y=﹣x﹣4,
∴∠ABO=45°=∠PFQ,
∴PQ=FQ,BG=GF,
∴EF=4PQ,
∴GE=GF+4PQ,
∵S△BGF=3S△EFP,
∴GF2=3××4PQ2,
∴GF=2 PQ,
∴.
科目:初中数学 来源: 题型:
【题目】下列语句:①全等三角形的周长相等.②面积相等的三角形是全等三角形.③若成轴对称的两个图形中的对称线段所在直线相交,则这个交点一定在对称轴上.④全等三角形的所有边相等.其中正确的有( )
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,∠BAC=90°,AB⊥AC,AB=3,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1的函数表达式为y1=﹣3x+3,且l1与x轴交于点D,直线l2:y2=kx+b经过点A,B,与直线l1交于点C.
(1)求直线l2的函数表达式及C点坐标;
(2)求△ADC的面积;
(3)当x满足何值时,y1>y2;(直接写出结果)
(4)在直角坐标系中有点E,和A,C,D构成平行四边形,请直接写出E点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,∠BAC=90°,AB⊥AC,AB=3,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com