【题目】如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.
(1)若∠A=50°,求∠DBC的度数.
(2)若AB=3,△CBD的周长为12,求△ABC得周长.
【答案】(1)15°;(2)15
【解析】
(1)根据等腰三角形内角和定理求出∠ABC=∠C=(180°﹣∠A)=65°,根据线段垂直平分线的性质得出AD=BD,求出∠ABD=∠A=50°,即可求出答案;
(2)求出AD+DC+BC=AC+BC=15,即可求出答案.
解:(1)∵在△ABC中,AB=AC,∠A=50°,
∴∠ABC=∠C=(180°﹣∠A)=65°,
∵DE是AB的垂直平分线,
∴AD=BD,
∴∠ABD=∠A=50°,
∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°;
(2)∵△CBD的周长为12,AD=BD,
∴BD+DC+BC=12,
∴AD+DC+BC=AC+BC=12,
∵AB=3,
∴△ABC的周长是AB+BC+AC=12+3=15
科目:初中数学 来源: 题型:
【题目】对于一个关于的代数式,若存在一个系数为正数关于的单项式,使 的结果是所有系数均为整数的整式,则称单项式为代数式的“整系单项式” ,例如:
当 时,由于 ,故是的整系单项式;
当 时,由于 ,故是的整系单项式;
当 时,由于 ,故是的整系单项式;
当 时,由于 ,故是的整系单项式;
显然,当代数式存在整系单项式时,有无数个,现把次数最低,系数最小的整系单项式记为 ,例如: .
阅读以上材料并解决下列问题:
⑴.判断:当 时, 的整系单项式(填“是”或“不是”);
⑵.当 时, = ;
⑶.解方程:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个工程队同时参与一项工程建设,共同施工15天完成该项工程的,乙队另有任务调走,甲队又单独施工30天完成了剩余的工程.
(1)若乙队单独施工,需要多少天才能完成该项工程?
(2)若乙队参与该项工程施工的时间不超过13天,则甲队至少施工多少天才能完成该项工程?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AD⊥BC于点D,则下列四个结论中:
①线段AD上任意一点到点B的距离与到点C的距离相等;
②线段AD上任意一点到AB的距离与到AC的距离相等;
③若点Q是线段AD的三等分点 ,则△ACQ的面积是△ABC面积的;
④若,则;
正确结论的序号是( )
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线y=x﹣2分别交x、y轴于C、A,物线y=﹣x2+x﹣2经过A、C两点,交x轴于另外一点B.点E为线段AC上一点,点F为线段AC延长线一点,AE=CF,点P为AC上方抛物线上的一点,当△PEF是以EF为底边的等腰三角形,且tan∠PFE=时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠ABC=∠DCB,添加一个条件使△ABC≌△DCB,下列添加的条件不能使△ABC≌△DCB的是( )
A. ∠A=∠D B. AB=DC C. AC=DB D. OB=OC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C.
(1)如图①,若∠A=40°时,点D在△ABC内,则∠ABC+∠ACB= 度,∠DBC+∠DCB= 度,∠ABD+∠ACD= 度;
(2)如图②,改变直角三角板DEF的位置,使点D在△ABC内,请探究∠ABD+∠ACD与∠A之间存在怎样的数量关系,并验证你的结论.
(3)如图③,改变直角三角板DEF的位置,使点D在△ABC外,且在AB边的左侧,直接写出∠ABD、∠ACD、∠A三者之间存在的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com