【题目】如图 1,在正方形 ABCD 中,E,F 分别是 AD,CD 上两点,BE 交 AF 于点 G,且 DE=CF.
(1)写出 BE 与 AF 之间的关系,并证明你的结论;
(2)如图 2,若 AB=2,点 E 为 AD 的中点,求 AG 的长度。
(3)在(2)的条件下,连接 GD,试证明 GD 是∠EGF 的角平分线,并求出 GD 的长;
【答案】(1)BE=AF,BE⊥AF,证明见解析;(2);(3)证明见解析;GD=.
【解析】
(1)先判断出△BAE≌△ADF(SAS),得出BE=AF,∠ABE=∠DAF,即可得出结论;
(2)利用面积法计算即可解决问题.
(3)先利用勾股定理求出AF,进而利用面积求出DN,进而判断出AG=DN,再判断出DM=AG,即可得出GD是∠MGN的平分线,进而判断出△DGN是等腰直角三角形即可得出结论.
(1)BE=AF,BE⊥AF,理由:
四边形ABCD是正方形,
∴BA=AD=CD,∠BAE=∠D=90°,
∵DE=CF,
∴AE=DE,
∴△BAE≌△ADF(SAS),
∴BE=AF,∠ABE=∠DAF,
∵∠ABE+∠AEB=90°,
∴∠DAE+∠AEB=90°,
∴∠BGA=90°,
∴BE⊥AF.
(2)在Rt△ABE中,∵AB=2,AE=1,
∴BE=,
∵S△ABE=ABAE=BEAG,
∴.
(3)如图,过点D作DN⊥AF于N,DM⊥BE交BE的延长线于M,
在Rt△ADF中,根据勾股定理得,,
∵S△ADF=AD×FD=AD×DN,
∴,
∵AG=,
∴AG=DN,
易证,△AEG≌△DEM(AAS),
∴AG=DM,
∴DN=DM,
∵DM⊥BE,DN⊥AF,
∴GD平分∠MGN,
∴∠DGN=∠MGN=45°,
∴△DGN是等腰直角三角形,
∴GD=DN=.
科目:初中数学 来源: 题型:
【题目】如图,把8块相同的小长方形地砖拼成一块大长方形地砖.
(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)
(2)小明想用一块面积为的正方形地毯,沿着边的方向裁剪出一块新的长方形地毯,用来盖住这块大长方形地砖你帮小明算一算,他能剪出符合要求的地毯吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用“”或“”填空:
(1)如果,,那么a________b;
(2)如果,,那么a____b;
(3)如果,,那么a____b;
(4)当,b____0时,或者,b___0时,有.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知函数y=x+2的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,4)且与x轴及y=x+2的图象分别交于点C、D,点D的坐标为(,n)
(1)则n= ,k= ,b=_______.
(2)若函数y=kx+b的函数值大于函数y=x+2的函数值,则x的取值范围是_______.
(3)求四边形AOCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD∥BC,∠BAC=70°,DE⊥AC于点E,∠D=20°.
(1)求∠B的度数,并判断△ABC的形状;
(2)若延长线段DE恰好过点B,试说明DB是∠ABC的平分线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:如图1,在正方形ABCD内有一点P,PA=,PB=,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.
请你参考小明同学的思路,解决下列问题:
(1) 图2中∠BPC的度数为 ;
(2) 如图3,若在正六边形ABCDEF内有一点P,且PA=,PB=4,PC=2,则∠BPC的度数为 ,正六边形ABCDEF的边长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,∠C=120°,AD=2AB=4,点H、G分别是边CD、BC上的动点.连接AH、HG,点E为AH的中点,点F为GH的中点,连接EF.则EF的最大值与最小值的差为( )
A. 1 B. ﹣1 C. D. 2﹣
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com