【题目】如图,AD∥BC,∠BAC=70°,DE⊥AC于点E,∠D=20°.
(1)求∠B的度数,并判断△ABC的形状;
(2)若延长线段DE恰好过点B,试说明DB是∠ABC的平分线.
【答案】(1)△ABC是等腰三角形,∠B=40°;(2)见解析.
【解析】(1)、根据Rt△ADE的内角和得出∠DAC=70°,根据平行线的性质得出∠C=70°,从而根据有两个角相等的三角形是等腰三角形得出答案;(2)、根据等腰三角形底边上的三线合一定理得出DB为顶角的角平分线.
解:(1)∵DE⊥AC于点E,∠D=20°,∴∠CAD=70°, ∵AD∥BC,
∴∠C=∠CAD=70°, 又∵∠BAC=70°,∴∠BAC=∠C,∴AB=BC,
∴△ABC是等腰三角形,∴∠B=180°-∠BAC-∠C=180°-70°-70°=40°.
(2)∵延长线段DE恰好过点B,DE⊥AC,∴BD⊥AC,∵△ABC是等腰三角形,
∴DB是∠ABC的平分线.
科目:初中数学 来源: 题型:
【题目】已知一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC=90°,tan∠ABC=.
(1)求点C的坐标;
(2)在第一象限内有一点M(1,m),且点M与点C位于直线AB的同侧,使得2S△ABM=S△ABC,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小马虎做一道数学题,“已知两个多项式,,试求.”其中多项式的二次项系数印刷不清楚.
(1)小马虎看答案以后知道,请你替小马虎求出系数“”;
(2)在(1)的基础上,小马虎已经将多项式正确求出,老师又给出了一个多项式,要求小马虎求出的结果.小马虎在求解时,误把“”看成“”,结果求出的答案为.请你替小马虎求出“”的正确答案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 1,在正方形 ABCD 中,E,F 分别是 AD,CD 上两点,BE 交 AF 于点 G,且 DE=CF.
(1)写出 BE 与 AF 之间的关系,并证明你的结论;
(2)如图 2,若 AB=2,点 E 为 AD 的中点,求 AG 的长度。
(3)在(2)的条件下,连接 GD,试证明 GD 是∠EGF 的角平分线,并求出 GD 的长;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】魔术师为大家表演魔术. 他请观众想一个数,然后将这个数按以下步骤操作:
魔术师立刻说出观众想的那个数.
(1)如果小明想的数是-2,那么他告诉魔术师的结果应该是_________________;
(2)如果小聪想了一个数并告诉魔术师结果为9,那么魔术师立刻说出小聪想的那个数是 ;请解释魔术师是如何求出那个数的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,过一点分别作坐标轴的垂线,若垂线与坐标轴围成矩形的周长与面积相等,则这个点叫做“和谐点”.
如图1,矩形ABOC的周长与面积相等,则点A是“和谐点”,
(1)点,其中“和谐点”是_______;
(2)如图2,若点是双曲线上的“和谐点”,请直接写出所有满足条件的P点坐标__________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(-4, ),B(-1,2)是一次函数y=kx+b与反比例函数y= (m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D。
(1)、根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)、求一次函数解析式及m的值;
(3)、P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD交AB的延长线于点E.
(1)求证:CE是⊙O的切线;
(2)求证:CG=BG;
(3)若∠DBA=30°,CG=4,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从2开始,连续的偶数相加,它们和的情况如下表:
(1)若n=7时,则S的值为___.
(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=___.
根据上题的规律计算:300+302+304+…+2016+2018+2020的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com