精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为半圆O的在直径,ADBC分别切⊙OAB两点,CD⊙O于点E,连接ODOC,下列结论:①∠DOC=90°②AD+BC=CD④ODOC=DEEC,正确的有( )

A. 2B. 3C. 4D. 5

【答案】D

【解析】

试题连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°∴DA=DECE=CBAD∥BC∴CD=DE+EC=AD+BC,选项正确;

Rt△ADORt△EDO中,∵OD=ODDA=DE∴Rt△ADO≌Rt△EDOHL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°∴2∠DOE+∠EOC=180°,即∠DOC=90°,选项正确;

∴∠DOC=∠DEO=90°,又∠EDO=∠ODC∴△EDO∽△ODC,即,选项正确;

∵∠AOD+∠COB=∠AOD+∠ADO=90°∠A=∠B=90°∴△AOD∽△BOC,选项正确;

同理△ODE∽△OEC,选项正确;

故选D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,已知抛物线y=﹣x2+bx+cx轴相交于AB两点,且点A的坐标为(10),与y轴交于点C,对称轴直线x2x轴相交于点D,点P是抛物线对称轴上的一个动点,以每秒1个单位长度的速度从抛物线的顶点E向下运动,设点P运动的时间为ts).

1)点B的坐标为   ,抛物线的解析式是   

2)求当t为何值时,△PAC的周长最小?

3)当t为何值时,△PAC是以AC为腰的等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:ab<0,b24a0<a+b+c<2,0<b<1,当x>﹣1时,y>0,其中正确结论的个数是

A.5个 B.4个 C.3个 D.2个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴交于点AB,与轴交于点C。过点CCDx轴,交抛物线的对称轴于点D,连结BD。已知点A坐标为(-10)。

1)求该抛物线的解析式;

2)求梯形COBD的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】炮弹的运行轨道若不计空气阻力是一条抛物线.现测得我军炮位A与射击目标B的水平距离为600m,炮弹运行的最大高度为1200m.

(1)求此抛物线的解析式;

(2)若在AB之间距离A500m处有一高350m的障碍物,计算炮弹能否越过障碍物.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在同一平面内,将两个全等的等腰直角摆放在一起,为公共顶点,,它们的斜边长为2,若固定不动,绕点旋转,与边的交点分别为(不与点重合,点不与点重合),设.

(1)请在图中找出两对相似而不全等的三角形,并选取其中一对加以证明.

(2)的函数关系式,直接写出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为 参考数据:tan78°12′≈4.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了一个圆形喷水池,在水池中心竖直安装了一根高米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为米处达到最高,水柱落地处离池中心米.

(1)请你建立适当的直角坐标系,并求出水柱抛物线的函数解析式;

(2)求出水柱的最大高度是多少?

查看答案和解析>>

同步练习册答案