【题目】如图,点N是△ABC的边BC延长线上的一点,∠ACN=2∠BAC,过点A作AC的垂线交CN于点P.
(1)若∠APC=30°,求证:AB=AP;
(2)若AP=8,BP=16,求AC的长;
(3)若点P在BC的延长线上运动,∠APB的平分线交AB于点M.你认为∠AMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠AMP的大小.
【答案】(1)、证明过程见解析;(2)、6;(3)、45°.
【解析】
试题分析:(1)、由∠P=30°,∠CAP=90°得∠ACP=60°,∠BAC=30°,所以∠ABP=30°,进而可得∠ABP=∠P,即AB=AP;(2)、设AC=x,由勾股定理建立方程得x2+82=(16﹣x)2求出x的值即可求出AC的长;
(3)、∠AMP的大小不发生变化,由∠AMP=∠B+∠APC=∠ACP+∠APC=(∠ACP+∠APC)=90°=45°进而可得结论.
试题解析:(1)、∵AC⊥AP, ∴∠CAP=90°, ∵∠P=30°, ∴∠ACP=60°, ∴∠BAC=30°,
∴∠ABP=30°, ∴∠ABP=∠P, ∴AB=AP;
(2)、设AC=x,在Rt△ACP中,由勾股定理建立方程得x2+82=(16﹣x)2 解得x=6, 所以AC=6;
(3)、∠AMP的大小不发生变化
理由如下: ∵∠AMP=∠B+∠APC=∠ACP+∠APC=(∠ACP+∠APC)=90°=45°,
∴是一个的值,即不发生变化.
科目:初中数学 来源: 题型:
【题目】某篮球队在平时训练中,运动员甲的3分球命中率是70%,运动员乙的3分球命中率是50%. 在一场比赛中,甲投3分球4次,命中一次;乙投3分球4次,全部命中. 全场比赛即将结束,甲、乙两人所在球队还落后对方球队2分,但只有最后一次进攻机会了,若你是这个球队的教练,问:(1)最后一个3分球由甲、乙中谁来投,获胜的机会更大?(2)请简要说说你的理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=3x2+2x-1向上平移4个单位长度后的函数解析式为( )
A. y=3x2+2x-5 B. y=3x2+2x-4 C. y=3x2+2x+3 D. y=3x2+2x+4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于直线l:y=kx+k(k≠0),下列说法不正确的是( )
A.点(0,k)在l上
B.l经过定点(﹣1,0)
C.当k>0时,y随x的增大而增大
D.l经过第一、二、三象限
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com