精英家教网 > 初中数学 > 题目详情
5.学校的“元旦迎新”活动中有这样一项游戏:每位选手朝特制的靶子上各投三支飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是21分、25分和27分,则小华的成绩是(  )
A.20分B.22分C.23分D.24分

分析 先设飞镖投到最小的圆中得x分,投到中间的圆中得y分,投到最外面的圆中得z分,再根据小明、小君、小红的成绩分别是21分、25分和27分,列出方程组,求出x,y,z的值,再根据小华所投的飞镖,列出式子,求出结果即可.

解答 解:设飞镖投到最小的圆中得x分,投到中间的圆中得y分,投到最外面的圆中得z分,根据题意得:
$\left\{\begin{array}{l}{2y+z=21}\\{2x+z=25}\\{3y=27}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=11}\\{y=9}\\{z=3}\end{array}\right.$.
则小华的成绩是11+9+3=23(分).
故选C.

点评 此题考查了三元一次方程组的应用,解题的关键是根据图形设出相应的未知数,再根据各自的得分列出相应的方程.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.抗震期间,某个别商贩将每件a元的食品提价20%后销售,当地政府及时采取措施,使每件食品的价格在涨价后下降15%,那么降价后每件的价格是(  )元.
A.1.2aB.1.02aC.aD.0.18

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m<-3;④3a+b>0.其中,正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.定义:把一个半圆与抛物线的一部分组成的封闭图形称为“蛋圆”.
如图,抛物线y=x2-2x-3与x轴交于点A,B,与y轴交于点D,以AB为直径,在x轴上方作半圆交y轴于点C,半圆的圆心记为M,此时这个半圆与这条抛物线x轴下方部分组成的图形就称为“蛋圆”.
(1)直接写出点A,B,C的坐标及“蛋圆”弦CD的长;
A(-1,0),B(3,0),C(0,$\sqrt{3}$),CD=3+$\sqrt{3}$;
(2)如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.
①求经过点C的“蛋圆”切线的解析式;
②求经过点D的“蛋圆”切线的解析式;
(3)由(2)求得过点D的“蛋圆”切线与x轴交点记为E,点F是“蛋圆”上一动点,试问是否存在S△CDE=S△CDF,若存在请求出点F的坐标;若不存在,请说明理由;
(4)点P是“蛋圆”外一点,且满足∠BPC=60°,当BP最大时,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知:抛物线y1=x2+bx+3与x轴分别交于点A(-3,0),B(m,0).将y1向右平移4个单位得到y2
(1)求b的值;
(2)求抛物线y2的表达式;
(3)抛物线y2与y轴交于点D,与x轴交于点E、F(点E在点F的左侧),记抛物线在D、F之间的部分为图象G(包含D、F两点),若直线y=kx+k-1与图象G有一个公共点,请结合函数图象,求直线y=kx+k-1与抛物线y2的对称轴交点的纵坐标t的值或取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.当x取什么值时,多项式3x2-5x+8与x2+4x+4的值相等?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.当m取什么整数时,关于x的方程$\frac{1}{2}$mx-$\frac{5}{3}$=$\frac{1}{2}$(x-$\frac{4}{3}$)的解是整数?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.计算:$\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{4}+\sqrt{3}}$+…+$\frac{1}{\sqrt{10}+\sqrt{9}}$=$\sqrt{10}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在△ABC中,∠B=22.5°,∠C=30°,AB的垂直平分线OD交BC边于点D,连结AD
(1)求∠DAC的度数;
(2)若AC=4cm,求△ABC的面积(结果保留根号)

查看答案和解析>>

同步练习册答案