分析 (1)把A(-3,0)代入y1=x2+bx+3求出b的值即可;
(2)将y1变形化成顶点式得:y1=(x+2)2-1,由平移的规律即可得出结果;
(3)求出抛物线y2的对称轴和顶点坐标,求出与坐标轴的交点坐标E(1,0),F(3,0),D(0,3),由题意得出直线y=kx+k-1过定点(-1,-1)得出当直线y=kx+k-1与图象G有一个公共点时,t=-1,求出当直线y=kx+k-1过F(3,0)时和直线过D(0,3)时k的值,分别得出直线的解析式,得出t的值,再结合图象即可得出结果.
解答 解:(1)把A(-3,0)代入y1=x2+bx+3得:9-3b+3=0,
解得:b=4,
∴y1的表达式为:y=x2+4x+3;
(2)将y1变形得:y1=(x+2)2-1
据题意y2=(x+2-4)2-1=(x-2)2-1=x2-4x+3;
∴抛物线y2的表达式为y=x2-4x+3;
(3)∵y2=(x-2)2-1,![]()
∴对称轴是x=2,顶点为(2,-1);
当y2=0时,x=1或x=3,
∴E(1,0),F(3,0),D(0,3),
∵直线y=kx+k-1过定点(-1,-1)
当直线y=kx+k-1与图象G有一个公共点时,t=-1,
当直线y=kx+k-1过F(3,0)时,3k+k-1=0,
解得:k=$\frac{1}{4}$,
∴直线解析式为y=$\frac{1}{4}$x-$\frac{3}{4}$,
把x=2代入=$\frac{1}{4}$x-$\frac{3}{4}$,得:y=-$\frac{1}{4}$,
当直线过D(0,3)时,k-1=3,
解得:k=4,
∴直线解析式为y=4x+3,
把x=2代入y=4x+3得:y=11,即t=11,
∴结合图象可知t=-1,或$\frac{1}{4}$<t≤11.
点评 本题考查了抛物线与x轴的交点、二次函数图象的平移、待定系数法求函数的解析式等知识;本题综合性强,有一定难度,确定二次函数的解析式和抛物线与x轴的交点坐标是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 20分 | B. | 22分 | C. | 23分 | D. | 24分 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 10 | B. | 11 | C. | 12 | D. | 13 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com