精英家教网 > 初中数学 > 题目详情

【题目】如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.

⑴BF= 厘米;

⑵求EC的长.

【答案】(1) 6 ;(2)EC=3 厘米.

【解析】

试题(1)由图形翻折变换的性质可知,AD=AF=10,在RtABF中利用勾股定理即可求解BF的长度;
(2)将CE的长设为x,得出DE=10-x=EF,在RtCEF中,根据勾股定理列出方程求解即可.

试题解析:(1)∵△ADE折叠后的图形是AFE,
AD=AF,D=AFE,DE=EF.
AD=BC=10厘米,
AF=AD=10厘米.
又∵AB=8厘米,在RtABF中,根据勾股定理,得AB2+BF2=AF2
82+BF2=102
BF=6厘米.

(2)设EC=x厘米,则DE=(8-x)厘米, FC=BC-BF=10-6=4厘米

由题意得EF=DE,FC=4厘米C=90°,

由勾股定理得EF2=FC2+EC2

(8-x)2=42+x2

解得:x=3 ,

答:EC长度为3厘米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且大棚内温度为20℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭后大棚内温度y(单位:℃)随光照时间x(单位:h)变化的大致图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:

(1)这天恒温系统在保持大棚内温度20℃的时间有 h;

(2)求k的值;

(3)当x=16 h时,大棚内的温度约为多少℃?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点AC分别在轴和轴上,点B的坐标为23。双曲线的图像经过BC的中点D,且与AB交于点E,连接DE

1)求k的值及点E的坐标;

2)若点F是边上一点,且FBC∽△DEB,求直线FB的解析式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上点表示的数为,点表示的数为4,点从点出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点从点出发,以每秒2个单位长度的速度向左匀速运动.设运动的时间为.

(1)为何值时,两点相遇?并写出相遇点所表示的数.

(2)为何值时,?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】读下面的题目及分析过程,并按要求进行证明。已知:如图,EBC的中点,ADB,

BAE=CDE,求证:AB=CD

分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等。因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形。现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明。

(1):延长DEF使得EF=DE

(2):CGDEG,BFDEFDE的延长线于F

(3):C点作CFABDE的延长线于F.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市有两家出租车公司,收费标准不同,甲公司收费标准为:起步价8元,超过3千米后,超过的部分按照每千米1.5元收费;乙公司收费标准为:起步价11元,超过3千米后,超过的部分按照每千米1.2元收费,车辆行驶千米,本题中取整数,不足1千米的路程按1千米计费,根据上述内容,完成以下问题:

1)当时,乙公司比甲公司贵______元;

2)当,且为整数时,甲乙两公司的收费分别是多少?(结果用化简后的含的式子表示);

3)当行驶路程为18千米时,哪家公司的费用更便宜?便宜多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校七年级开展征文活动,征文主题只能从爱国”“敬业”“诚信”“友善四个主题选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行调查,根据调查结果绘制成如下两幅不完整的统计图.

1)求共抽取了多少名学生的征文;

2)将上面的条形统计图补充完整;

3)在扇形统计图中,爱国主题所对应的圆心角是多少;

4)如果该校七年级共有名学生,请估计该校选择以友善为主题的七年级学生有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.

(1)求该商家第一次购进机器人多少个?

(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.

例如:求点P(﹣1,2)到直线y=3x+7的距离.

解:∵直线y=3x+7,其中k=3,b=7.

∴点P(﹣1,2)到直线y=3x+7的距离为:

d====

根据以上材料,解答下列问题:

(1)求点P(﹣1,3)到直线y=x﹣3的距离;

(2)已知⊙Q的圆心Q坐标为(0,3),半径r3,判断⊙Q与直线y=x+9的位置关系并说明理由;

(3)已知直线y=3x+3y=3x﹣6平行,求这两条直线之间的距离.

查看答案和解析>>

同步练习册答案