精英家教网 > 初中数学 > 题目详情

【题目】某市有两家出租车公司,收费标准不同,甲公司收费标准为:起步价8元,超过3千米后,超过的部分按照每千米1.5元收费;乙公司收费标准为:起步价11元,超过3千米后,超过的部分按照每千米1.2元收费,车辆行驶千米,本题中取整数,不足1千米的路程按1千米计费,根据上述内容,完成以下问题:

1)当时,乙公司比甲公司贵______元;

2)当,且为整数时,甲乙两公司的收费分别是多少?(结果用化简后的含的式子表示);

3)当行驶路程为18千米时,哪家公司的费用更便宜?便宜多少?

【答案】13;(2)甲公司的收费是:1.5x3.5;乙公司的收费是:1.2x7.4;(3)乙公司的费用更便宜,便宜1.5元.

【解析】

1)当0x3时,甲公司收费为8元,乙公司收费为11元,据此可得答案;

2)根据甲、乙两公司的收费标准分别列出代数式即可;

3)当x18时,分别求出代数式的值,比较即可.

解:(1)当0x3时,由题意得,甲公司收费为8元,乙公司收费为11元,

1183(元),

∴乙公司比甲公司贵3元;

2)当x3,且x为整数时,

甲公司的收费是:81.5x3)=1.5x3.5

乙公司的收费是:111.2x3)=1.2x7.4

3)当行驶路程为18千米,即x18时,

甲公司的收费是:1.5x3.51.5×183.530.5(元),

乙公司的收费是:1.2x7.41.2×187.429(元),

30.5291.5(元),

∴乙公司的费用更便宜,便宜1.5元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】A、B两城相距900千米,一辆客车从A城开往B城,车速为每小时80千米,同时一辆出租车从B城开往A城,车速为每小时100千米,设客车出发时间为t(小时).

探究  若客车、出租车距A城的距离分别为y1、y2,写出y1、y2关于t的函数关系式及自变量取值范围,并计算当y1=240千米时y2的値.

发现  (1)设点CA城与B城的中点,AC=AB,通过计算说明:哪个车先到达C城?该车到达C后再经过多少小时,另一个车会到达C?

(2)若两车扣相距100千米时,求时间t.

决策  已知客车和出租车正好在A,B之间的服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案:

方案一:继续乘坐出租车到C城,加油后立刻返回B城,出租车加油时间忽略不计;

方案二:在D处换乘客车返回B城.

试通过计算,分析小王选择哪种方式能更快到达B城?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线相交于点,将一直角三角尺的直角顶点与点重合,平分.

1的度数为______________

2)将三角尺以每秒的速度绕点顺时针旋转,同时直线也以每秒的速度绕点顺时针旋转,设运动时间为.

①求当为何值时,直线平分

②求当为何值时,直线平分

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②ab+c<0;③b+2a<0;④abc>0,其中正确的是( )

A. ①②③ B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.

⑴BF= 厘米;

⑵求EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)

(1)若商店计划销售完这批商品后能获利1 100元,请问甲、乙两种商品应分别购进多少件?

(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并指出获利最大的购货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于O点,过点OBC的平行线交ABM点,交ACN点,则△AMN的周长为( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,M为等腰△ABD的底AB的中点,过DDCAB,连结BC;AB=8cm,DM=4cm,DC=1cm,动点PA点出发,在AB上匀速运动,动点Q自点B出发,在折线BC﹣CD上匀速运动,速度均为1cm/s,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(s)时,△MPQ的面积为S(不能构成△MPQ的动点除外).

(1)t(s)为何值时,点QBC上运动,t(s)为何值时,点QCD上运动;

(2)求St之间的函数关系式;

(3)当t为何值时,S有最大值,最大值是多少?

(4)当点QCD上运动时,直接写出t为何值时,△MPQ是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,锐角ABC内接于O,若O的半径为6,sinA=,求BC的长.

【答案】BC=8.

【解析】试题分析:通过作辅助线构成直角三角形,再利用三角函数知识进行求解.

试题解析:作⊙O的直径CD,连接BD,则CD=2×6=12.

点睛:直径所对的圆周角是直角.

型】解答
束】
22

【题目】如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点BBCx轴,垂足为C,且SABC=5.

(1)求一次函数与反比例函数的解析式;

(2)根据所给条件,请直接写出不等式k1x+b>的解集;

(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.

查看答案和解析>>

同步练习册答案