精英家教网 > 初中数学 > 题目详情

【题目】已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.

例如:求点P(﹣1,2)到直线y=3x+7的距离.

解:∵直线y=3x+7,其中k=3,b=7.

∴点P(﹣1,2)到直线y=3x+7的距离为:

d====

根据以上材料,解答下列问题:

(1)求点P(﹣1,3)到直线y=x﹣3的距离;

(2)已知⊙Q的圆心Q坐标为(0,3),半径r3,判断⊙Q与直线y=x+9的位置关系并说明理由;

(3)已知直线y=3x+3y=3x﹣6平行,求这两条直线之间的距离.

【答案】(1);(2)Q与直线y=x+9相切,理由见解析;(3)

【解析】分析:

(1)根据题中所给公式进行计算即可;

(2)计算出点Q到直线的距离,并和半径进行比较即可作出结论;

(3)在直线上任取一点,计算出这点到直线的距离即可.

详解:

(1)∵直线y=x﹣3,其中k=1,b=﹣3,

∴点P(﹣13)到直线y=x3的距离为d===

(2)⊙Q与直线y=x+9相切,理由如下

直线y=x+9,其中k=,b=9,

∴圆心Q03)到直线y=x+9的距离为d===3,

∵⊙Q的半径r=3,

∴d=r,

∴⊙Q与直线y=x+9相切;

(3)当x=0时,y=3x+3=3,

点(0,3)在直线y=3x+3

∵点(03)到直线y=3x6的距离为d===直线y=3x+3与直线y=3x﹣6平行,

∴这两条直线之间的距离为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.

⑴BF= 厘米;

⑵求EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知为直线上的一点,且为直角,平分.

1)如图1,若,则等于多少度;

2)如图2,若平分,且,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在锐角ABC中,ABC=45°,高线AD、BE相交于点F.

(1)判断BF与AC的数量关系并说明理由;

(2)如图2,将ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DEAM时,判断NE与AC的数量关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.

(1)求A、B型号衣服进价各是多少元?

(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,锐角ABC内接于O,若O的半径为6,sinA=,求BC的长.

【答案】BC=8.

【解析】试题分析:通过作辅助线构成直角三角形,再利用三角函数知识进行求解.

试题解析:作⊙O的直径CD,连接BD,则CD=2×6=12.

点睛:直径所对的圆周角是直角.

型】解答
束】
22

【题目】如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点BBCx轴,垂足为C,且SABC=5.

(1)求一次函数与反比例函数的解析式;

(2)根据所给条件,请直接写出不等式k1x+b>的解集;

(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中的ABC,若小方格边长为1,格点ABC(顶点是网格线交点的三角形)的顶点A,C的坐标分别为(﹣1,1),(0,﹣2),请你根据所学的知识.

(1)在如图所示的网格平面内作出平面直角坐标系;

(2)作出ABC关于y轴对称的三角形A1B1C1

(3)判断ABC的形状,并求出ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【操作发现】

如图,在边长为1个单位长度的小正方形组成的网格中,ABC的三个顶点均在格点上.

(1)请按要求画图:将ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;

(2)在(1)所画图形中,∠AB′B=   

【问题解决】

如图,在等边三角形ABC中,AC=7,点P在ABC内,且∠APC=90°BPC=120°,求APC的面积.

小明同学通过观察、分析、思考,对上述问题形成了如下想法:

想法一:将APC绕点A按顺时针方向旋转60°,得到AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;

想法二:将APB绕点A按逆时针方向旋转60°,得到AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.

请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)

【灵活运用】

如图,在四边形ABCD中,AEBC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),求BD的长(用含k的式子表示).

查看答案和解析>>

同步练习册答案