精英家教网 > 初中数学 > 题目详情

【题目】已知为直线上的一点,且为直角,平分.

1)如图1,若,则等于多少度;

2)如图2,若平分,且,求的度数.

【答案】1)∠AOC =18°;(2)∠BON=152°

【解析】

1)由∠BON=36°,求得∠BOM=144°,由OC平分∠MOB,求得∠COB=72°,由于∠AOB为直角,则由∠AOC=AOB-COB可求得结论;

2)设∠BOC=MOC=x°,再根据角的关系得出方程,解答后求出结论即可.

解:(1)∵∠BON=36°

∴∠BOM=144°

OC平分∠MOB

∴∠COB=72°

∵∠AOB为直角,

∴∠AOC=AOB-COB=18°

2)设∠BOC=MOC=x°

∵∠AOB为直角,

∴∠AOM=90°-2x°

∵∠DON-AOM=21°

∴∠DON=AOM+21°=111°-2x°

OD平分∠CON

∴∠CON=222°-4x°

∵∠CON+MOC=180°

222-4x+x=180

x=14

∴∠BON=180°-BOM=180°-28°=152°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点AC分别在轴和轴上,点B的坐标为23。双曲线的图像经过BC的中点D,且与AB交于点E,连接DE

1)求k的值及点E的坐标;

2)若点F是边上一点,且FBC∽△DEB,求直线FB的解析式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校七年级开展征文活动,征文主题只能从爱国”“敬业”“诚信”“友善四个主题选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行调查,根据调查结果绘制成如下两幅不完整的统计图.

1)求共抽取了多少名学生的征文;

2)将上面的条形统计图补充完整;

3)在扇形统计图中,爱国主题所对应的圆心角是多少;

4)如果该校七年级共有名学生,请估计该校选择以友善为主题的七年级学生有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.

(1)求该商家第一次购进机器人多少个?

(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果ABC三点在同一直线上,且线段AB=6 cmBC=4 cm,若MN分别为ABBC的中点,那么MN两点之间的距离为( )

A. 5 cm B. 1 cm C. 51 cm D. 无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.

①当0≤x≤3时,求yx之间的函数关系.

3x≤12时,求yx之间的函数关系.

③当容器内的水量大于5升时,求时间x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2﹣2x+3与x轴交于点AB,把抛物线在x轴及其上方的部分记作C1,将C1关于点B中心对称得C2C2x轴交于另一点C,将C2关于点C中心对称得C3,连接C1C3的顶点,则图中阴影部分的面积为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.

例如:求点P(﹣1,2)到直线y=3x+7的距离.

解:∵直线y=3x+7,其中k=3,b=7.

∴点P(﹣1,2)到直线y=3x+7的距离为:

d====

根据以上材料,解答下列问题:

(1)求点P(﹣1,3)到直线y=x﹣3的距离;

(2)已知⊙Q的圆心Q坐标为(0,3),半径r3,判断⊙Q与直线y=x+9的位置关系并说明理由;

(3)已知直线y=3x+3y=3x﹣6平行,求这两条直线之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)操作思考:如图1,在平面直角坐标系中,等腰直角的直角顶点在原点,将其绕着点旋转,若顶点恰好落在点处.则①的长为______;②点的坐标为______(直接写结果)

2)感悟应用:如图2,在平面直角坐标系中,将等腰直角如图放置,直角顶点,点,试求直线的函数表达式.

3)拓展研究:如图3,在直角坐标系中,点,过点轴,垂足为点,作轴,垂足为点是线段上的一个动点,点是直线上一动点.问是否存在以点为直角顶点的等腰直角,若存在,请直接写出此时点的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案