精英家教网 > 初中数学 > 题目详情

【题目】小明在学了三角形的角平分线后,遇到下列4个问题请你帮他解决.如图,在△ABC中,∠BAC= 50°,点I∠ABC、∠ACB平分线的交点.

问题(1):填空:∠BIC=_________°.

问题(2):若点D是两条外角平分线的交点,则∠BDC=_________°.

问题(3):若点E是内角∠ABC、外角∠ACG的平分线的交点,则∠BEC∠BAC的数量关系是________

问题(4):在问题(3)的条件下,当∠ACB等于__________°,CE∥AB.

【答案】 115 65 ∠BEC∠BAC,或∠BAC=2∠BEC 80

【解析】分析:(1)、根据角平分线的性质以及三角形内角和定理得出答案;(2)、根据三角形外角的性质以及三角形内角和定理得出各角之间的关系,从而得出答案;(3)、根据三角形的内角和定理得出答案;(4)、根据平行线的性质得出∠ACE=∠A=50°,然后根据角平分线的性质得出∠ACG=2∠ACE=100°,然后根据三角形内角和定理得出答案.

详解:(1)∵点I是两角B、C平分线的交点,
∴∠BIC=180°-(∠IBC+∠ICB)=180°-(∠ABC+∠ACB)=180°-(180°-∠A)
=90+∠BAC=115°;
(2)∵BE、BD分别为∠ABC的内角、外角平分线, ∴∠DBI=90°,同理∠DCI=90°,
在四边形CDBI中,∠BDC=180°-∠BIC=90°-∠BAC=65°;
(3)∠BEC=∠BAC.
证明:在△BDE中,∠DBI=90°,∴∠BEC=90°-∠BDC=90°-(90°-∠BAC)=∠BAC;
(4)当∠ACB等于80°时,CE∥AB.理由如下:
∵CE∥AB,∴∠ACE=∠A=50°,∵CE是∠ACG的平分线,∴∠ACG=2∠ACE=100°,
∴∠ABC=∠ACG-∠BAC=100°-50°=50°, ∴∠ACB=180°-∠BAC-∠ABC=80°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】 下列命题:相等的角是对顶角;两条直线被第三条直线所截,同旁内角互补;直线外一点到这条直线的垂线段叫做点到直线的距离;平行于同一直线的两直线互相平行.其中假命题的个数是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简3x2﹣(2x2+5x1)﹣(3x+1),再求值,其中x10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在四边形中,∠A=∠C=90°.

(1)如图1,若BE平分∠ABC,DF平分∠ADC的邻补角,请写出BEDF的位置关系,并证明.

(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DEBF位置关系并证明.

(3)如图3,若BE、DE分别五等分∠ABC、∠ADC的邻补角(即∠CDE=,∠CBE=),则∠E=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一副三角板如图1摆放,∠C=∠DFE=90,∠B=30,∠E=45,FBC,ADF,AF平分∠CAB,现将三角板DFE绕点F顺时针旋转(当点D落在射线FB上时停止旋转).

(1)当∠AFD=_ __,DF∥AC;当∠AFD=__ _时,DF⊥AB;

(2)在旋转过程中,DFAB的交点记为P,如图2,若AFP有两个内角相等,求∠APD的度数;

(3)当边DE与边AB、BC分别交于点M、N时,如图3,若∠AFM=2∠BMN,比较∠FMN与∠FNM的大小,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠BAC=60°,ABC、ACB的平分线交于E,DAE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;DB=DC;DB=DE;④∠BDE=BCA.其中正确结论的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC, ∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=132°,∠BGC=118°,则∠A的度数为( )

A. 65° B. 66° C. 70° D. 78°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是由边长为1个单位长度的小正方形组成的网格图.

1)请在图中建立平面直角坐标系,使AB两点的坐标分别为A23)、B-20);

2)正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形,在图中画出格点ABC使得AB=AC,请写出在(1)中所建坐标系内所有满足条件的点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10)已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.

(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;

(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.

查看答案和解析>>

同步练习册答案