【题目】如果a c b ,那么我们规定(a,b)=c,例如:因为23 8 ,所以(2,8)=3.
(1)根据上述规定,填空:(3,27)= ,(4,1)= ,(2, )= ;
(2)若记(3,5)=a,(3,6)=b,(3,30)=c,求证: a b c .
科目:初中数学 来源: 题型:
【题目】在等边三角形ABC中,AB=6,点D是BC边上的一点,点P是AB边上的一点,连接PD,以PD为边作等边三角形PDE,连接BE.
(1)如图1,当点P与点A重合时,
①找出图中的一对全等三角形,并证明;
②BE+BD=;
(2)如图2,若AP=1,请计算BE+BD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司生产一种新型生物医药产品,生产成本为2万元/ 吨,每月生产能力为12吨,且生产出的产品都能销售出去.这种产品部分内销,另一部分外销(出口),内销与外销的单价 (单位:万元/吨)与销量的关系分别如图1,图2.
(1)如果该公司内销数量为x(单位:吨),内、外销单价分别为y 1 , y 2 ,求, 关于x的函数解析式;
(2)如果该公司内销数量为x(单位:吨),求内销获得的毛利润 关于x的函数解析式;
(3)请设计一种销售方案,使该公司本月能获得最大毛利润,并求出毛利润的最大值.(毛利润=销售收入-生产成本).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD CD,垂足为D,AD交⊙O 于E,连接CE.
(1)求证:CD 是⊙O 的切线
(2)若E是弧AC的中点,⊙O 的半径为1,求图中阴影部分的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD.
(1)求证:△ABD≌△CFD;
(2)已知BC=7,AD=5,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,经过市场调查,购买一台型设备比购买一台型设备多花费2万元,购买2台A型设备比购买3台B型设备少花费6万元.
(1)购买一台A型设备、购买一台B型设备各需要多少万元;
(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).
(1)在如图所示的网格平面内作出平面直角坐标系;
(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;
(3)P是x轴上的动点,在图中找出使△A′BP周长最短时的点P,直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P.
(观察猜想)
①AE与BD的数量关系是 ;
②∠APD的度数为 .
(数学思考)
如图2,当点C在线段AB外时,(1)中的结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;
(拓展应用)
如图3,点E为四边形ABCD内一点,且满足∠AED=∠BEC=90°,AE=DE,BE=CE,对角线AC、BD交于点P,AC=10,则四边形ABCD的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成推理过程
(1)如图,已知∠1=∠2,∠B=∠C,求证:AB∥CD.
证明∵∠1=∠2(已知),
且∠1=∠CGD( )
∴∠2=∠CGD( ),
∴CE∥BF( ),
∴∠C=∠BFD( )
又∵∠B=∠C(已知),
∴∠BFD=∠B( ),
∴AB∥CD( )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com