【题目】甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.
(1)在图1中,“7分”所在扇形的圆心角等于 .
(2)请你将图2的条形统计图补充完整;
(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.
【答案】(1)144;(2)条形统计图补充见解析;(3)平均分为8.3,中位数为7,从平均数看,两队成绩一样,从中位数看,乙队成绩好.
【解析】
(1)认真分析题意,观察扇形统计图,根据扇形统计图的圆心角之和为360°和所给的角度即可得到答案;
(2)结合扇形统计图和条形统计图,得出乙校参加的人数,即可得8分的人数,完成条形统计图即可.
(3)结合第(2)问的答案,可以补充统计表,接下来结合平均数、中位数的概念,即可求出甲校的平均分以及中位数,通过与乙校进行比较,即可得到答案.
(1)观察扇形统计图,可得
“7分”所在扇形图的圆心角等于360°-(90°+54°+72°)=144°
(2)(人)
20-8-4-5=3(人)
乙校得8分的人数为3,补充统计图如图所示
(3)由甲乙两校参加的人数相等,可得
甲校得9分的人数为20-(11+8)=1
故甲校成绩统计表中,得9分的对应人数为1.
结合平均数的概念,可得
甲校的平均分为 =8.3(分)
结合中位数的概念,可得
甲校的中位数为7
从平均分、中位数的角度分析,甲乙两校的平均分相同,乙校的中位数>甲校的中位数,
可知乙校的成绩好.
科目:初中数学 来源: 题型:
【题目】规定:求若干个相同的有理数(均不等于 )的除法运算叫做除方,如 , 等,类比有理数乘方,我们把 记作 ,读作“ 的圈 次方,” 记作 ,读作:“ 的圈 次方”.一般地,把 记作a , 读作“ 的圈 次方”
(1)(初步探究)
Ⅰ.直接写出计算结果: =________, ________.
Ⅱ.关于除方,下列说法错误的是(________)
A.任何非零数的圈 次方都等于它的倒数
B.两个数互为倒数,那么它的n次方和圈n次方也互为倒数
C.对于任何正整数 ,(-1)=1
D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.
(2)(深入思考)
我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?
Ⅰ.试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.- ________; ________.
Ⅱ.想一想:将一个非零有理数 的圈 /span> 次方写成幂的形式等于________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】移动互联网是现代通信平台,可以实现手机之间的私密互联,任意两台手机私密互联构成一条连接通路.
(1)若台手机、、同时私密互联,请画出图形,并用线段表示构成的所有连接通路:
(2)若台手机、、、同时私密互联,形成几条连接通路?
(3)若台手机同时私密互联,形成几条连接通路?请用含的式子表示.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,相距5km的A、B两地间有一条笔直的马路,C地位于AB两地之间且距A地2km,小明同学骑自行车从A地出发沿马路以每小时5km的速度向B地匀速运动,当到达B地后立即以原来的速度返回。到达A地停止运动,设运动时间为t(小时).小明的位置为点P、若以点C为坐标原点,以从A到B为正方向,用1个单位长度表示1km,解答下列各问:
(1)指出点A所表示的有理数;
(2)求t =0.5时,点P表示的有理数;
(3)当小明距离C地1km时,直接写出所有满足条件的t值;
(4)在整个运动过程中,求点P与点A的距离(用含t的代数式表示);
(5)用含t的代数式表示点P表示的有理数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB,AC于点E,G,连接GF,给出下列结论:
①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4 ,其中正确的结论个数有()
A. 2个B. 4个C. 3个D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.
(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?
(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?
(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?
【答案】(1)x+10元;(2)每个定价为70元,应进货200个.(3)每个定价为65元时得最大利润,可获得的最大利润是6250元.
【解析】试题分析:(1)根据利润=销售价-进价列关系式,(2)总利润=每个的利润×销售量,销售量为400-10x,列方程求解,根据题意取舍,(3)利用函数的性质求最值.
试题解析:由题意得:(1)50+x-40=x+10(元),
(2)设每个定价增加x元,
列出方程为:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使进货量较少,则每个定价为70元,应进货200个,
(3)设每个定价增加x元,获得利润为y元,
y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,当x=15时,y有最大值为6250,所以每个定价为65元时得最大利润,可获得的最大利润是6250元.
【题型】解答题
【结束】
24
【题目】猜想与证明:
如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.
拓展与延伸:
(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为 .
(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同学们知道,|8﹣3|表示8与3的差的绝对值,也可理解为数轴上表示数8与3两点间的距离.试探索:
(1)填空:|8+3|表示数轴上数8与数 两点间的距离;
(2)|x+5|+|x﹣2|表示数轴上数x与数 的距离和数x与数 的距离的和.
(3)满足|x+5|+|x﹣2|=7的所有整数x的值是 .
(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有写出最小值;如果没有,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数轴上,点A,B,C表示的数分别是-6,10,12.点A以每秒3个单位长度的速度向右运动,同时线段BC以每秒1个单位长度的速度也向右运动.
(1)运动前线段AB的长度为________;
(2)当运动时间为多长时,点A和线段BC的中点重合?
(3)试探究是否存在运动到某一时刻,线段AB=AC?若存在,求出所有符合条件的点A表示的数;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com