【题目】某市为了鼓励居民在枯水期(当年11月至第二年5月)节约用电,规定7:00至23:00为用电高峰期,此期间用电电费y1(单位:元)与用电量x(单位:度)之间满足的关系如图所示;规定23:00至第二天早上7:00为用电低谷期,此期间用电电费y2(单位:元)与用电量x(单位:元)之间满足如表所示的一次函数关系.
(1)求y2与x的函数关系式;并直接写出当0≤x≤180和x>180时,y1与x的函数关系式;
(2)若市民王先生一家在12月份共用电350度,支付电费150元,求王先生一家在高峰期和低谷期各用电多少度.
低谷期用电量x度 | … | 80 | 100 | 140 | … |
低谷期用电电费y2元 | … | 20 | 25 | 35 | … |
【答案】(1)y2与x的函数关系式为y=0.25x; ;(2)王先生一家在高峰期用电250度,低谷期用电100度.
【解析】
(1)设y2与x的函数关系式为y=k2x+b2,代入(80,20)、(100,25)解得y2与x的函数关系式;设当0≤x≤180时,y1与x的函数关系式为y=0.5x;当x>180时,设y1=k1+b1
代入(180,90)、(280,150),即可y1与x的函数关系式.
(2)设王先生一家在高峰期用电x度,低谷期用电y度,根据题意列出方程求解即可.
(1)设y2与x的函数关系式为y=k2x+b2,根据题意得
,
解得 ,
∴y2与x的函数关系式为y=0.25x;
当0≤x≤180时,y1与x的函数关系式为y=0.5x;
当x>180时,设y1=k1+b1,根据题意得
,
解得 ,
∴y1与x的函数关系式为y=0.6x﹣18;
∴ ;
(2)设王先生一家在高峰期用电x度,低谷期用电y度,根据题意得
,
解得 .
答:王先生一家在高峰期用电250度,低谷期用电100度.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.
(1)求证:DE是⊙O的切线;
(2)若AD=16,DE=10,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于点D,交AC于点E.
(1)求∠BAD的度数;
(2)若AB=10,BC=12,求△ABD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题探究
(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.
(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;
问题解决
(3)如图③,AC为边长为2的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A(a,﹣)在直线y=﹣上,AB∥y轴,且点B的纵坐标为1,双曲线y=经过点B.
(1)求a的值及双曲线y=的解析式;
(2)经过点B的直线与双曲线y=的另一个交点为点C,且△ABC的面积为.
①求直线BC的解析式;
②过点B作BD∥x轴交直线y=﹣于点D,点P是直线BC上的一个动点.若将△BDP以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,直接写出所有满足条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列等式:
12×231=132×21,
13×341=143×31
23×352=253×32,
34×473=374×43,
62×286=682×26,
……
以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”
(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:
①52× = ×25
② ×396=693× ;
(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a,b),并证明;
(3)若(2)中a,b表示一个两位数,例如a=11,b=22,则1122×223311=113322×2211,请写出表示这类“数字对称等式”一般规律的式子(含a,b),并写出a+b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的方格纸中.
(1)作出关于对称的图形.
(2)说明,可以由经过怎样的平移变换得到?
(3)以所在的直线为轴,的中点为坐标原点,建立直角坐标系,试在轴上找一点,使得最小(保留找点的作图痕迹,描出点的位置,并写出点的坐标).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com