【题目】如图,在△ABC中,∠A=90°,AB=2,AC=,以BC为斜边作等腰Rt△BCD,连接AD,则线段AD的长为_____.
【答案】
【解析】
过D 作DE⊥AB于E,DF⊥AC于F,则四边形AEDF是矩形,先证明△BDE≌△CDF(AAS),可得DE=DF,BE=CF,以此证明四边形AEDF是正方形,可得∠DAE=∠DAF=45°,AE=AF,代入AB=2,AC=可得BE、AE的长,再在Rt△ADE中利用特殊三角函数值即可求得线段AD的长.
过D 作DE⊥AB于E,DF⊥AC于F,
则四边形AEDF是矩形,
∴∠EDF=90°,
∵∠BDC=90°,
∴∠BDE=∠CDF,
∵∠BED=∠CFD=90°,BD=DC,
∴△BDE≌△CDF(AAS),
∴DE=DF,BE=CF,
∴四边形AEDF是正方形
∴∠DAE=∠DAF=45°,
∴AE=AF,
∴2﹣BE=+BE,
∴BE=,
∴AE=,
∴AD=AE=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】已知抛物线与轴交于,两点,与轴交于点,点和点的坐标分别为,抛物线的对称轴为,为抛物线的顶点.
求抛物线的解析式.
抛物线的对称轴上是否存在一点,使为等腰三角形?若存在,写出点点的坐标,若不存在,说明理由.
点为线段上一动点,过点作轴的垂线,与抛物线交于点,求四边形面积的最大值,以及此时点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.
(1)求a,b的值及反比例函数的解析式;
(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;
(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分10分 )在端午节前夕三位同学到某超市调研一种进价为2元的粽子的售销情况,请跟据小丽提供的信息,解答小华和小明提出的问题
小丽:每个定价3元,每天能卖出500个,而且,这种粽子每上涨0.1元,其售销量将减小10个
小华:照你所说,如果实现每天800元的售销利润,那该如何定价?莫忘了物价局规定售价不能超过进价的240%哟
小明:800元售销利润是不是最多的呢?如果不是,那该如何定价,才会使每天的利润最大?.
(1)小华的问题解答:
(2)小明的问题解答:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC经过平移后得到,已知点的坐标为(4,0),写出顶点,的坐标;
(2)若△ABC和关于原点O成中心对称图形,写出的各顶点的坐标;
(3)将△ABC绕着点O按顺时针方向旋转90°得到,写出的各顶点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为了鼓励居民在枯水期(当年11月至第二年5月)节约用电,规定7:00至23:00为用电高峰期,此期间用电电费y1(单位:元)与用电量x(单位:度)之间满足的关系如图所示;规定23:00至第二天早上7:00为用电低谷期,此期间用电电费y2(单位:元)与用电量x(单位:元)之间满足如表所示的一次函数关系.
(1)求y2与x的函数关系式;并直接写出当0≤x≤180和x>180时,y1与x的函数关系式;
(2)若市民王先生一家在12月份共用电350度,支付电费150元,求王先生一家在高峰期和低谷期各用电多少度.
低谷期用电量x度 | … | 80 | 100 | 140 | … |
低谷期用电电费y2元 | … | 20 | 25 | 35 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正比例函数和反比例函数的图象都经过点A(﹣3,﹣3).
(1)求正比例函数和反比例函数的表达式;
(2)把直线OA向上平移后与反比例函数的图象交于点B(﹣6,m),与x轴交于点C,求m的值和直线BC的表达式;
(3)在(2)的条件下,直线BC与y轴交于点D,求以点A,B,D为顶点的三角形的面积;
(4)在(3)的条件下,点A,B,D在二次函数的图象上,试判断该二次函数在第三象限内的图象上是否存在一点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角三角形中,,,点坐标为,点坐标为,且 ,满足.
(1)写出、两点坐标;
(2)求点坐标;
(3)如图,,为上一点,且,请写出线段的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com