【题目】如图,等腰直角三角形
中,
,
,
点坐标为
,
点坐标为
,且
,
满足
.
(1)写出
、
两点坐标;
(2)求
点坐标;
(3)如图,
,
为
上一点,且
,请写出线段
的数量关系,并说明理由.
![]()
【答案】(1)点A的坐标为
,点C的坐标为
;(2)点B的坐标为(2,4);(3)MN= CN+AM,理由见解析
【解析】
(1)根据绝对值的非负性和平方的非负性即可求出a、b的值,从而求出
、
两点坐标;
(2)过点A作AE∥y轴,过点B作BE⊥AE,作BD⊥x轴,设点B的坐标为(x,y),分别用x、y表示出CD、BE、AE的长,然后利用AAS证出△EBA≌△DBC,可得BE=BD,AE=CD,列出方程即可求出点B的坐标;
(3)过点B作BF⊥BM,交AC的延长线与点F,连接MF,利用SAS证出△ABM≌△CBF,从而得到AM=CF,BM=BF,∠AMB=∠CFB,根据等边对等角可得∠BMF=∠BFM,然后证出∠FMN=∠MFN,再根据等角对等边可得MN=NF,即可得出结论.
解:(1)∵![]()
∴![]()
∵![]()
∴![]()
解得:a=-2,b=2
∴点A的坐标为
,点C的坐标为
;
(2)过点A作AE∥y轴,过点B作BE⊥AE,作BD⊥x轴,如下图所示
![]()
设点B的坐标为(x,y)
∴BD=y,OD=x
∴CD=4-x,BE=x-(-2)=x+2,AE=y-2
∵BD⊥x轴
∴BD∥y轴
∴AE∥BD
∴∠DBE=180°-∠AEB=90°
∴∠EBA+∠ABD=90°
∵等腰直角三角形
中,
,![]()
∴∠DBC+∠ABD=90°
∴∠EBA=∠DBC
在△EBA和△DBC中
![]()
∴△EBA≌△DBC
∴BE=BD,AE=CD
即x+2= y,y-2=4-x
解得:x=2,y=4
∴点B的坐标为(2,4);
(3)MN= CN+AM,理由如下
过点B作BF⊥BM,交AC的延长线与点F,连接MF
![]()
∴∠MBC+∠CBF=90°
∵△ABC为等腰三角形
∴BA=BC,∠BAC=∠BCA=45°,∠ABC=90°
∴∠MBC+∠ABM=90°,∠BCF=180°-∠BCA=135°,∠BAM=∠MAC+∠BAC=135°
∴∠ABM =∠CBF,∠BAM=∠BCF
在△ABM和△CBF中
![]()
∴△ABM≌△CBF
∴AM=CF,BM=BF,∠AMB=∠CFB
∴∠BMF=∠BFM,
∵![]()
∴∠NMB=∠CFB
∴∠BMF-∠NMB=∠BFM-∠CFB
∴∠FMN=∠MFN
∴MN=NF
∵NF=CN+CF
∴MN=CN+AM
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,BC交⊙O于点D,E是
的中点,AE与BC交于点F,∠C=2∠EAB.
(1)求证:AC是⊙O的切线;
(2)已知CD=4,CA=6,
①求CB的长;
②求DF的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A(a,﹣
)在直线y=﹣
上,AB∥y轴,且点B的纵坐标为1,双曲线y=
经过点B.
(1)求a的值及双曲线y=
的解析式;
(2)经过点B的直线与双曲线y=
的另一个交点为点C,且△ABC的面积为
.
①求直线BC的解析式;
②过点B作BD∥x轴交直线y=﹣
于点D,点P是直线BC上的一个动点.若将△BDP以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,直接写出所有满足条件的点P的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列等式:
12×231=132×21,
13×341=143×31
23×352=253×32,
34×473=374×43,
62×286=682×26,
……
以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”
(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:
①52× = ×25
② ×396=693× ;
(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a,b),并证明;
(3)若(2)中a,b表示一个两位数,例如a=11,b=22,则1122×223311=113322×2211,请写出表示这类“数字对称等式”一般规律的式子(含a,b),并写出a+b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,对于平面内的点P和两条曲线
、
给出如下定义:若从点P任意引出一条射线分别与
、
交于
、
,总有
是定值,我们称曲线
与
“曲似”,定值
为“曲似比”,点P为“曲心”.
例如:如图2,以点
为圆心,半径分别为
、
都是常数
的两个同心圆
、
,从点
任意引出一条射线分别与两圆交于点M、N,因为总有
是定值,所以同心圆
与
曲似,曲似比为
,“曲心”为
.
在平面直角坐标系xOy中,直线
与抛物线
、
分别交于点A、B,如图3所示,试判断两抛物线是否曲似,并说明理由;
在
的条件下,以O为圆心,OA为半径作圆,过点B作x轴的垂线,垂足为C,是否存在k值,使
与直线BC相切?若存在,求出k的值;若不存在,说明理由;
在
、
的条件下,若将“
”改为“
”,其他条件不变,当存在
与直线BC相切时,直接写出m的取值范围及k与m之间的关系式.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,直线l2:y=
x+1交x轴于点D,交y轴于点C,直线l1、l2交于点M.
(1)点M坐标为_____;
(2)若点E在y轴上,且△BME是以BM为一腰的等腰三角形,则E点坐标为_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=
(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com