精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,BC交⊙O于点D,E的中点,AEBC交于点F,C=2EAB.

(1)求证:AC是⊙O的切线;

(2)已知CD=4,CA=6,

①求CB的长;

②求DF的长.

【答案】(1)证明见解析;(2) ①BC=9;②DF=2.

【解析】

(1) 连结AD, 根据圆周角定理,EBD的中点得到∠EAB=EAD, 由于∠ACB=2EAB, 则∠ACB=DAB, 再利用圆周角定理得到∠ADB=, 则∠DAC+ACB=90, 所以∠DAC+DAB=, 于是根据切线的判定定理得到ACOO的切线;

(2)①在RtABC, 根据cosC===AC=6可得AC=6;

②作FHABH, BD=BC-CD=5, EAB=EAD, FDAD,FHAB, 推出FD=FH, FB=x, DF=FH=5-x, 根据cosBFH=cosC==,构建方程即可解决问题.

(1)连结AD,如图,

E是的中点,

==,

∴∠EAB=∠EAD,

∵∠ACB=2∠EAB,

∴∠ACB=∠DAB,

AB是O的直径,

∴∠ADB=90°,

∴∠DAC+∠ACB=90°,

∴∠DAC+∠DAB=90°,即∠BAC=90°,

∴AC⊥AB,

AC是O的切线;

(2)①在RtACB中,

∵cosC===,AC=6,

∴BC=9.

作FHAB于H,

∵BD=BC﹣CD=5,∠EAB=∠EAD,FD⊥AD,FH⊥AB,

FD=FH,设FB=x,则DF=FH=5﹣x,

∵FH∥AC,

∴∠HFB=∠C,

在RtBFH中,

∵cos∠BFH=cos∠C==

=

解得x=3,即BF的长为3,

∴DF=2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,中点,

求证:(1

2是等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线轴交于两点,与轴交于点,点和点的坐标分别为,抛物线的对称轴为为抛物线的顶点.

求抛物线的解析式.

抛物线的对称轴上是否存在一点,使为等腰三角形?若存在,写出点点的坐标,若不存在,说明理由.

为线段上一动点,过点轴的垂线,与抛物线交于点,求四边形面积的最大值,以及此时点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y=k0)与矩形OABC在第一象限相交于DE两点,OA=2OC=4,连接ODOEDE.△OAD△OCE的面积分别为SS .

1B的坐标为 ②S S(填“=”);

2)当点D为线段AB的中点时,求k的值及点E的坐标;

3)当S+S=2时,试判断△ODE的形状,并求△ODE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,C是O外一点,AB=AC,连接BC,交O于点D,过点D作DEAC,垂足为E.

(1)求证:DE与O相切.

(2)B=30°,AB=4,则图中阴影部分的面积是   (结果保留根号和π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,BDABC的角平分线,且BD=BCEBD延长线上的一点,BE=BA,过EEFABF为垂足,下列结论:①△ABD≌△EBC;②∠BCE+BCD=180°;③AD=EF=EC;④AE=EC,其中正确的是________(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,过点AACx轴于点C,过点BBDx轴于点D.

(1)a,b的值及反比例函数的解析式;

(2)若点P在直线y=﹣x+2上,且SACP=SBDP,请求出此时点P的坐标;

(3)x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分10 在端午节前夕三位同学到某超市调研一种进价为2元的粽子的售销情况,请跟据小丽提供的信息,解答小华和小明提出的问题

小丽:每个定价3元,每天能卖出500个,而且,这种粽子每上涨0.1元,其售销量将减小10个

小华:照你所说,如果实现每天800元的售销利润,那该如何定价?莫忘了物价局规定售价不能超过进价的240%哟

小明:800元售销利润是不是最多的呢?如果不是,那该如何定价,才会使每天的利润最大?.

(1小华的问题解答:

(2小明的问题解答:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰直角三角形中,点坐标为点坐标为,且 满足

(1)写出两点坐标;

(2)点坐标;

(3)如图,上一点,且,请写出线段的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案