精英家教网 > 初中数学 > 题目详情

【题目】已知:如图①,在矩形ABCD中,AB=5,AD= ,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF,BF.

(1)求AE和BE的长;
(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值;
(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P.与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.

【答案】
(1)

解:在Rt△ABD中,AB=5,AD=

由勾股定理得:BD= = =

∵SABD= BDAE= ABAD,

∴AE= = =4.

在Rt△ABE中,AB=5,AE=4,

由勾股定理得:BE=3


(2)

解:设平移中的三角形为△A′B′F′,如答图2所示:

由对称点性质可知,∠1=∠2.

由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′=3.

①当点F′落在AB上时,

∵AB∥A′B′,

∴∠3=∠4,

∴∠3=∠2,

∴BB′=B′F′=3,即m=3;

②当点F′落在AD上时,

∵AB∥A′B′,

∴∠6=∠2,

∵∠1=∠2,∠5=∠1,

∴∠5=∠6,

又易知A′B′⊥AD,

∴△B′F′D为等腰三角形,

∴B′D=B′F′=3,

∴BB′=BD﹣B′D= ﹣3= ,即m=


(3)

解:存在.理由如下:

在旋转过程中,等腰△DPQ依次有以下4种情形:

①如答图3﹣1所示,点Q落在BD延长线上,且PD=DQ,易知∠2=2∠Q,

∵∠1=∠3+∠Q,∠1=∠2,

∴∠3=∠Q,

∴A′Q=A′B=5,

∴F′Q=F′A′+A′Q=4+5=9.

在Rt△BF′Q中,由勾股定理得:BQ= = =3

∴DQ=BQ﹣BD=3

②如答图3﹣2所示,点Q落在BD上,且PQ=DQ,易知∠2=∠P,

∵∠1=∠2,

∴∠1=∠P,

∴BA′∥PD,则此时点A′落在BC边上.

∵∠3=∠2,

∴∠3=∠1,

∴BQ=A′Q,

∴F′Q=F′A′﹣A′Q=4﹣BQ.

在Rt△BQF′中,由勾股定理得:BF′2+F′Q2=BQ2

即:32+(4﹣BQ)2=BQ2

解得:BQ=

∴DQ=BD﹣BQ= =

③如答图3﹣3所示,点Q落在BD上,且PD=DQ,易知∠3=∠4.

∵∠2+∠3+∠4=180°,∠3=∠4,

∴∠4=90°﹣ ∠2.

∵∠1=∠2,

∴∠4=90°﹣ ∠1.

∴∠A′QB=∠4=90°﹣ ∠1,

∴∠A′BQ=180°﹣∠A′QB﹣∠1=90°﹣ ∠1,

∴∠A′QB=∠A′BQ,

∴A′Q=A′B=5,

∴F′Q=A′Q﹣A′F′=5﹣4=1.

在Rt△BF′Q中,由勾股定理得:BQ= = =

∴DQ=BD﹣BQ=

④如答图3﹣4所示,点Q落在BD上,且PQ=PD,易知∠2=∠3.

∵∠1=∠2,∠3=∠4,∠2=∠3,

∴∠1=∠4,

∴BQ=BA′=5,

∴DQ=BD﹣BQ= ﹣5=

综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形;

DQ的长度分别为3


【解析】(1)利用矩形性质、勾股定理及三角形面积公式求解;(2)依题意画出图形,如答图2所示.利用平移性质,确定图形中的等腰三角形,分别求出m的值;(3)在旋转过程中,等腰△DPQ有4种情形,如答图3所示,对于各种情形分别进行计算.
【考点精析】本题主要考查了勾股定理的概念的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知双曲线y= ,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A、B,连接AB,BC.

(1)求k的值;
(2)若△BCD的面积为12,求直线CD的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随即抽查部分同学体育测试成绩(由高到低分A、B、C、D四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.
请根据以上不完整的统计图提供的信息,解答下列问题:

(1)该课题研究小组共抽查了名同学的体育测试成绩,扇形统计图中B级所占的百分比b= , D级所在小扇形的圆心角的大小为
(2)请直接补全条形统计图;
(3)若该校九年级共有600名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).

投篮次数(n)

50

100

150

200

250

300

500

投中次数(m)

28

60

78

104

123

152

251

投中频率(m/n)

0.56

0.60

0.52

0.52

0.49

0.51

0.50

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.

(1)求证:四边形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2+bx+4经过点(2,-2).
(1)求出这个抛物线的解析式;
(2)求这个抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小红、小兵玩捉迷藏游戏,小红、小兵可以在A,B,C三个地点中任意一处藏身,小明去寻找他们.
(1)求小明在B处找到小红的概率;
(2)求小明在同一地点找到小红和小兵的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰Rt△,如此继续下去,直到所画直角三角形的斜边与△ABC的BC边在同一直线上时为止,此时,这个直角三角形的斜边长为(

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为(
A.6.5
B.6
C.5.5
D.5

查看答案和解析>>

同步练习册答案