精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的方程x2+(k+3)x+=0有两个不相等的实数根.

(1)求k的取值范围;

(2)若方程两根为x1,x2,那么是否存在实数k,使得等式=﹣1成立?若存在,求出k的值;若不存在,请说明理由.

【答案】(1)k>﹣;(2)6.

【解析】分析:(1)根据方程的系数结合根的判别式>0,即可得出关于k的一元一次不等式,解之即可得出结论;(2)根据根与系数的关系可得出x1+x2=﹣k﹣3、x1x2=将其代入中求出k值,再由(1)的结论即可确定k值,进而求解.

详解:(1)∵关于x的方程x2+(k+3)x+=0有两个不相等的实数根,

∴△=(k+3)2﹣4×1×=6k+9>0,

解得:k>﹣

(2)∵方程x2+(k+3)x+=0的两根为x1、x2

x1+x2=﹣k﹣3,x1x2=

=﹣1,即=﹣1,

k2﹣4k﹣12=0,

解得:k1=﹣2,k2=6.

k>﹣

k=6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC中,∠ABC=∠ACB,把这个三角形折叠,使得点B与点A重合,折痕分别交直线ABAC于点MN,若∠ANM50°,则∠B的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC底边BC的长为4,面积为12,腰AB的垂直平分线EFAB于点E,交AC于点F.DBC边的中点,M为线段EF上一个动点,则BDM的周长的最小值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是⊙O外一点,AC,BC分别与⊙O相交于D.

(1)在图中作出ABC的边AB上的高CH.(要求:①仅用无刻度真尺,且不能用直尺中的直角;②保留必要的作图痕迹)

(2)连接DE,若,则∠C的度数是  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+cx轴交于A,B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论:①b>0;a﹣b+c<0;③阴影部分的面积为4;④若c=﹣1,则b2=4a.其中正确的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A012),B(-50),连接AB.将△AOB沿过点B的直线折叠,使点A落在x轴上的点处,折痕所在的直线交y轴正半轴于点C,则点C的坐标为___________________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知A11)、B35),要在坐标轴上找一点,使得△PAB的周长最小,则点的坐标为( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:如图1,我们把对角线互相垂直的四边形叫做垂美四边形.垂美四边形有如下性质:

垂美四边形的两组对边的平方和相等.

已知:如图1,四边形ABCD是垂美四边形,对角线AC、BD相交于点E.

求证:AD2+BC2=AB2+CD2

证明:四边形ABCD是垂美四边形

∴AC⊥BD,

∴∠AED=∠AEB=∠BEC=∠CED=90°,

由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2

AB2+CD2=AE2+BE2+CE2+DE2

∴AD2+BC2=AB2+CD2

拓展探究:

(1)如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.

(2)如图3,在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;

问题解决:

如图4,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5.求GE长.

查看答案和解析>>

同步练习册答案