【题目】如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,
(1)求证:AC2=ABAD.
(2)求证:CE∥AD;
(3)若AD=4,AB=6,求AF的值.
【答案】(1)详见解析;(2)详见解析;(3)AF=.
【解析】
(1)先根据角平分线得出∠CAD=∠CAB,进而判断出△ADC∽△ACB,即可得出结论;
(2)先利用直角三角形的性质得出CE=AE,进而得出∠ACE=∠CAE,从而∠CAD=∠ACE,即可得出结论;
(3)由(1)的结论求出AC,再求出CE=3,最后由(2)的结论得出△CFE∽△AFD,即可得出结论.
解:(1)∵AC平分∠BAD,
∴∠CAD=∠CAB,
∵∠ADC=∠ACB=90°,
∴△ADC∽△ACB,
∴,
∴AC2=ADAB;
(2)在Rt△ABC中,∵E为AB的中点,
∴CE=AE(直角三角形斜边的中线等于斜边的一半),
∴∠ACE=∠CAE,
∵AC平分∠BAD,
∴∠CAD=∠CAE,
∴∠CAD=∠ACE,
∴CE∥AE;
(3)由(1)知,AC2=ADAB,
∵AD=4,AB=6,
∴AC2=4×6=24,
∴AC=2,
在Rt△ABC中,∵E为AB的中点,
∴CE=AB=3,
由(2)知,CE∥AD,
∴△CFE∽△AFD,
∴,
∴,
∴AF=.
科目:初中数学 来源: 题型:
【题目】四边形的一条对角线将这个四边形分成两个三角形,如果这两个三角形相似(不全等),那么我们将这条对角线叫做这个四边形的相似对角线.
(1)如图1,四边形中,,,对角线平分,求证:是四边形的相似对角线;
(2)如图2,直线分别与,轴相交于,两点,为反比例函数()上的点,若是四边形的相似对角线,求反比例函数的解析式;
(3)如图3,是四边形的相似对角线,点的坐标为,轴,,连接,的面积为.过,两点的抛物线()与轴交于,两点,记,若直线与抛物线恰好有3个交点,求实数的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在由边长为个单位长度的小正方形组成的网格中,已知点,,,均为网格线的交点.
(1)在网格中将绕点顺时针旋转,画出旋转后的图形;
(2)在网格中将放大倍得到,使与为对应点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,点D在AB边上,CD与OB交于点E,∠ACD=∠OBC;
(1)如图1,求证:CD⊥AB;
(2)如图2,当∠BAC=∠OBC+∠BCD时,求证:BO平分∠ABC;
(3)如图3,在(2)的条件下,作OF⊥BC于点F,交CD于点G,作OH⊥CD于点H,连接FH并延长,交OB于点P,交AB边于点M.若OF=3,MH=5,求AC边的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若AB=,BD=2,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.
(1)求证:四边形AECF是矩形;
(2)若AB=6,求菱形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:如图1,等腰直角三角形中,,点、点分别在边上,且,显然.
变式:若将图1中的绕点逆时针旋转,使得点在的内部,其它条件不变(如图2),请你猜想线段与线段的关系,并加以证明.
拓展:若图2中的、都为等边三角形,其它条件不变(如图3),则__________,直线与相交所夹的锐角为__________°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从三角形(不是等腰三角形)一个顶点引出一条射线 与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
如图1,在中,是的完美分割线,且, 则的度数是
如图2,在中,为角平分线,,求证: 为的完美分割线.
如图2,中,是的完美分割线,且是以为底边的等腰三角形,求完美分割线的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形纸片ABCD(AD>DC)的一角沿着过点D的直线折叠,使点A与BC边上的点E重合,折痕交AB于点F.若BE:EC=m:n,则AF:FB=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com