精英家教网 > 初中数学 > 题目详情

【题目】如图,AC是正方形ABCD的对角线,点OAC的中点,点QAB上一点,连接CQDPCQ于点E,交BC于点P,连接OPOQ

求证:(1)BCQ≌△CDP(2)OP=OQ.

【答案】(1)见解析;(2)见解析.

【解析】

(1)根据正方形的性质和DPCQ于点E可以得到证明△BCQ≌△CDP的全等条件;

(2)根据(1)得到BQ=PC,然后连接OB,根据正方形的性质可以得到证明△BOQ≌△COP的全等条件,然后利用全等三角形的性质就可以解决题目的问题.

证明:(1)∵四边形ABCD是正方形,

∴∠B=∠PCD=90°BC=CD

∴∠2+∠3=90°

∵DP⊥CQ

∴∠2+∠1=90°

∴∠1=∠3

△BCQ△CDP中,

∴△BCQ≌△CDP

(2)连接OB

(1)△BCQ≌△CDP可知:BQ=PC

四边形ABCD是正方形,

∴∠ABC=90°AB=BC

∵点OAC中点,

∴BO=AC=CO,∠4=ABC=45°=PCO

△BOQ△COP中,

∴△BOQ≌△COP

∴OQ=OP.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(0.5,0),有下列结论:
①abc>0; ②a﹣2b+4c=0; ③25a﹣10b+4c=0; ④3b+2c>0;⑤a﹣b≥m(am﹣b).
其中所有正确的结论是( )

A.①②③
B.①③④
C.①②③⑤
D.①③⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】向右平移个单位长度,再向下平移个单位长度,得到

1)在平面直角坐标系中,画出

2)写出平移后点的坐标:_________).__________).__________);

3)求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1ACBD是对角线。将DCB绕着点D顺时针旋转45°得到DGHHGAB于点E,连接DEAC于点F,连接FG。则下列结论:①四边形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.其中正确的结论是( )

A. ①②③④ B. ①②③ C. ①② D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A(3,2)和点M(m,n)都在反比例函数y=(x>0)的图像上,

(1)k的值,并求当m=4时,直线AM的解析式;

(2)过点MMPx,垂足为P,过点AABy,垂足为B,直线AMx轴于点Q,试说明四边形ABPQ是平行四边形;

(3)(2)的条件下,四边形ABPQ能否为菱形?若能,请求出m的值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图 C 是线段 AB 上一点 5BC=2AB,D AB 的中点,E CB 的中点,(1) DE=6,求 AB 的长;(2)求 AD:AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题

情景:

试根据图中的信息,解答下列问题:

(1)购买6根跳绳需___________元,购买12根跳绳需_____________元

(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,C=90°B=30°,以A为圆心,任意长为半径画弧分别交ABAC于点MN,再分别以MN为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是

ADBAC的平分线;②∠ADC=60°DAB的中垂线上;SDACSABC=13

A1 B2 C3 D4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某文具商店销售功能相同的AB两种品牌的计算器购买2A品牌和3B品牌的计算器共需156购买3A品牌和1B品牌的计算器共需122

(1)求这两种品牌计算器的单价

(2)学校开学前夕该商店对这两种计算器开展了促销活动具体办法如下A品牌计算器按原价的八折销售B品牌计算器超出5个的部分按原价的七折销售设购买xA品牌的计算器需要y1购买xx>5)个B品牌的计算器需要y2分别求出y1y2关于x的函数关系式

(3)当需要购买50个计算器时买哪种品牌的计算器更合算?

查看答案和解析>>

同步练习册答案