精英家教网 > 初中数学 > 题目详情

【题目】某购物超市为了方便顾客购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯,如图所示,已知原阶梯式自动扶梯AB的长为10m,∠ABD45°,AD⊥直线BC于点D,改造后的斜坡式自动扶梯的坡角∠ACB20°,求改造后的扶梯水平距离增加的部分BC的长度.(结果精确到0.1m,参考数据:sin20°≈0.35cos20°≈0.94tan20°≈0.371.41

【答案】改造后的扶梯水平距离增加的部分BC的长大约是12米.

【解析】

利用RtABD先求出ADBD的长度,在利用RtADC求出CD的长度,最后用CD的长度减去BD的长度即可解答.

解:如图,∵AD⊥BD,AB=18,∠ABD=45,

∴AD=BD=10×sin45=,

在Rt△ADC中 ,∠ACD=20,

,∴,

.

答:改造后的扶梯水平距离增加的部分BC的长大约是12米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】.某商场为缓解停车难问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,ABBD,BAD=18°,CBD,BC=0.5 m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说得对?请你判断并计算出正确的结果.(结果精确到0.1 m,参考数据:sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.325)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示每千克的销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.

1)请解释图中点D的横坐标、纵坐标的实际意义.

2)求线段AB所表示的y1x之间的函数表达式.

3)当0≤x≤90时,销售该产品获得的利润与产量的关系式是   ;当90≤x≤130时,销售该产品获得的利润与产量的关系式是   ;总之,当产量为  kg时,获得的利润最大,最大利润是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,RtABC中,∠ACB90°,AC5BC12,点D在边AB上,以AD为直径的O,与边BC有公共点E,则AD的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a4b5,则该矩形的面积为(  )

A.50B.40C.30D.20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B.APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映yx之间关系的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,AB=8,点P在边CD上,tanPBC=,点Q是在射线BP上的一个动点,过点QAB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.

1)如图1,当点R与点D重合时,求PQ的长;

2)如图2,试探索: 的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;

3)如图3,若点Q在线段BP上,设PQ=xRM=y,求y关于x的函数关系式,并写出它的定义域.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0t4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;

(3)将AOB绕平面内某点M旋转90°或180°,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,对于点Pab),若点P′的坐标为()(其中k为常数,且k≠0),则称点P′为点P“k关联点

1)点P(﹣34)的“2关联点”P′的坐标是_______________;

2)若ab为正整数,点P“k关联点”P′的坐标为(39),请直接写出k的值及点P的坐标;

3)如图,点Q的坐标为(02 ),点A在函数的图象上运动,且点A是点B关联点,求线段BQ的最小值.

查看答案和解析>>

同步练习册答案