精英家教网 > 初中数学 > 题目详情
2.按要求完成作图:
①作△ABC关于y轴对称的△A1B1C1
②S△ABC=2.5.

分析 ①利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1
②用一个矩形的面积减去三个三角形的面积可计算出△ABC的面积.

解答 解:①如图,△A1B1C1为所作;

②S△ABC=3×2-$\frac{1}{2}$×3×1-$\frac{1}{2}$×2×1-$\frac{1}{2}$×2×1=2.5.
故答案为2.5.

点评 本题考查了作图-轴对称变换:画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.记住关于坐标轴对称的点的坐标特征.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=2,则△A6B6A7的边长为64.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在边长均为1的小正方形网格纸中,△OAB的顶点0、A、B均在格点上,且O是直角坐标系的原点,点A在x轴上.
(1)以0为位似中心,将△OAB放大,使得放大后的△OA1B1,与△OAB对应线段的比为 2:1,画出△OA1B1 (所画△OA1B1与△OAB在原点两侧).
(2)写出A1、B1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.求下列函数图象的顶点坐标:
(1)y=x2-4x+1(配方法)
(2)y=3x2+4x+6(公式法)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.
(1)求∠D的度数.
(2)若OE=1cm,求劣弧BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,点A、B是⊙O上两点,AB=16,点P是⊙O上的动点(P与A、B不重合)连接AP、PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系中,直线AB与y轴交于点A,与x轴交于点B,且∠BAO=30°,现将△OAB沿直线AB翻折,得到△CAB.连接OC交AB于点D.
(1)求证:AD⊥OC,OD=$\frac{1}{2}$OA;
(2)若Rt△AOB的斜边AB=4$\sqrt{3}$,则OB=2$\sqrt{3}$;OA=6;点C的坐标为($3\sqrt{3}$,3);
(3)在(2)的条件下,动点F从点O出发,以2个单位长度/秒的速度沿折线O-A-C向终点C运动,设△FOB的面积为S(S>0),点F的运动时间为t秒,求S与t的关系式,并直接写出t的取值范围;
(4)在(3)的条件下,过点B作BE⊥x轴,交AC于点E,在动点F的运动过程中,当t为何值时,△BEF是以BE为腰的等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算一:
(1)(+3)+(-2)
(2)(-4)-1
(3)(-$\frac{1}{2}$)×4                              
(4)-$\frac{2}{3}$×(-6)
(5)(+48)÷(+6);                                
(6)(-3$\frac{2}{3}$)÷(5$\frac{1}{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.(3x3y3z-1-2(5xy-2z32=$\frac{{25z}^{8}}{{9x}^{4}{y}^{10}}$.

查看答案和解析>>

同步练习册答案